主 编:翟婉明
副 主 编:李恒超 WANG Kelvin C.P.
创办时间:1954年创刊
主 办:西南交通大学
电 话:028-66367562
传 真:028-66366552
E-mail:xbz@home.swjtu.edu.cn
刊出周期:中文双月刊
检索
高级检索
期刊检索
分类检索
新闻公告More
- 喜报 | 《西南交通大学学报》入选2024年度中国高校科技期刊建设示范案例库•百佳科技期刊
- 喜报 | 《西南交通大学学报》再次被评为 “RCCSE中国权威学术期刊(A+)”
- 专栏征稿 | “不可移动文物预防性保护关键技术”专栏
- 专刊征稿 | “自主式交通管控创新理论与方法”专刊
- 喜报 !《西南交通大学学报》入选中国科技期刊卓越行动计划二期项目
- 第十四届全国隧道及地下空间运营安全与节能环保科技论坛
- 祝贺中国工程院工程科技学术研讨会——第十二届国际桥梁与隧道技术大会在沪成功召开!
- 中国工程院工程科技学术研讨会—— 第十二届国际桥梁与隧道技术大会(IBTC 2024) 会议通知
- 关于《西南交通大学学报》网站暂停校外IP访问的通告(7.26-8.8日)
- “6G赋能的无人机网络理论、技术及应用” 专栏征稿启事
为提高铁路网的利用能力和运输效率,提出一种高适用性的列车编组计划优化方法. 首先,在车流径路未知的情况下综合考虑车辆集结与改编时间的随机性,采用模糊机会约束规划方法,将集结时间成本与改编时间成本限制在一定的波动区间,构建不确定性的0-1整数规划模型;以货车集结时间成本、货车改编时间成本和货车运输成本最小为目标函数,通过三角模糊数处理时间不确定性,引入车辆集结与改编时间的波动性约束,并采用粒子群算法进行寻优,获取列车编组计划,构造算例以验证所提方法的有效性. 研究结果表明:列车编组计划经优化后,货车在车站总停留时间为
为尽可能满足乘客出行需求,制定科学合理的公交运行时刻表能够保持公交稳定运行的同时降低运行成本. 首先,针对可变线路公交区别于常规定点定线公交的运行特征,提出一种将常规公交转变为可变线路公交接驳地铁的策略,在无需开设新接驳线路的前提下服务原有公交车出行需求乘客和短途出行需求的地铁乘客;然后,通过分析乘客出行行为的规律与特点,根据可变线路公交和地铁的时空信息以及乘客换乘行为的时空参数,利用混合整数非线性规划构建可变线路公交接驳地铁的路径、时间、调度协同优化模型和算法;最后,结合案例,分析车辆运行速度与出行需求水平以及不同时间成本侧重情况对发车间隔、车辆运行时间、运行成本等系统各项指标的影响. 研究表明:在运行周期内适当增加发车频率可以有效降低乘客出行时间成本,且不会增加系统总成本;为可变线路公交接驳地铁的时刻表构建提供了基本理论和自动化编制方法,提高了公交运行效率和服务质量.
为探究蠕变效应下支护结构的长期劣化特性,针对隧道支护结构体系,建立锚杆破断、钢拱架屈服和混凝土塑性损伤力学模型,采用数值算例验证支护结构劣化力学模型的有效性,并探究竖向应力、静水压力和水平应力为主条件下锚杆破断、钢拱架屈服和衬砌损伤的劣化特性. 研究表明:破断首先发生在隧道边墙中部位置的锚杆,再沿隧道环向向两侧发展;钢拱架轴力呈先加速增长、后缓慢发展、最后急速降低的特征,轴力快速降低的同时伴随着弯矩的剧烈变化,部分测点弯矩出现由负变正的特征;受压损伤破坏区主要分布在隧道边墙和墙脚位置,受拉损伤首先出现在二次衬砌边墙中部的表面;侧压力系数越大,锚杆破断、钢拱架屈服、衬砌形成的贯通受压破坏区和受拉损伤达到最大值的时间越早.
为满足震后建筑结构快速修复的需求,提出一种以高强钢棒(HG钢棒)作为暗柱纵筋的短肢剪力墙,即采用高强钢棒的混凝土短肢剪力墙,预制3个1/3缩尺的钢筋混凝土短肢剪力墙构件,通过拟静力试验,分析暗柱纵筋类型和轴压比对试件抗震性能及自复位能力的影响. 试验结果表明,与普通混凝土短肢剪力墙相比,在大变形时,高强钢棒-混凝土短肢剪力墙构件表现出良好的位移-硬化效应和自复位性,滞回曲线整体呈S形,极限承载力提高83%;其残余变形较小,在位移角3.0%时,残余变形为0.65%;在高轴压比(限值)作用下,高强钢棒-混凝土短肢剪力墙构件的极限承载能力提高11%,在位移角3.5%时,残余变形为0.50%.
为揭示高温条件下沥青混合料的性能转变特征,提出相应的高温性能评价指标,对RIOHTrack足尺环道所用3种细粒式沥青混合料在不同温度、频率及应变条件下的动态模量和相位角进行测试,基于动态模量与相位角的关系,提出一个能反映沥青混合料高温性能转变的特征动态模量指标,并通过Bigaussian模型对动态模量-相位角曲线进行拟合,确定3种混合料特征动态模量的数值和性能下降速度,据此提出一个能同时反映特征动态模量、相位角和性能下降速度的抗车辙性能综合评价指标
列车在运行过程中产生的周期性动应力对路基填料的动强度构成了显著挑战,现有研究多采用连续加载方式模拟列车荷载,未能充分反映列车荷载的间歇性,为探究连续、间歇加载下黄土路基的动强度差异性,采用GDS 动三轴仪设计一系列连续和间歇加载的固结不排水试验,探讨围压和动应力幅值对土体动强度的影响,并对比分析不同加载方式对路基黄土动强度及其强度参数的作用效果. 试验结果表明:黄土路基的动强度随着围压的增大而增大,但增长幅度却逐渐减小;动粘聚力(
为提高复杂工况下悬浮电磁铁线圈故障诊断的准确性,基于故障前、后电流特性变化,考虑温度、加减载、气隙扰动等因素的影响,提出一种基于周期内电流变化率增量的电磁铁线圈故障诊断方法. 通过建立两电平控制下电磁铁线圈输出电流变化率增量的数学模型,分析得到电流变化特性,明确电磁铁线圈匝间短路是电流变化率增量异常的本质因素,即可通过检测电流变化率增量变化来作为故障判断条件;针对间隙变化导致电流变化率增量改变触发误诊断的问题,采用最小二乘法求解实际间隙与正常状态下电量变化率增量的关系式,建立查找表,从而根据间隙变化来实时调整电流变化率增量阈值. 经过仿真和实验验证:该算法适用于磁浮列车的各种工况,鲁棒性强;在线圈短路比5%时,故障诊断准确率高达97%,灵敏度高;能够在一个基波周期内完成故障诊断,诊断速度快.
为进一步优化和改善高速磁浮列车导向系统的控制性能,以高速磁浮列车导向系统为研究对象,在基于搭接结构导向系统的数学模型基础上进行导向控制器的设计和仿真实验;分析高速磁浮列车在通过弯道时的情况,考虑了2种工作条件(磁浮列车以不同速度通过弯道、磁浮列车受到不同大小的侧向干扰力)建立考虑扰动的导向系统数学模型,采用线性二次型最优控制方法设计导向系统标称控制器,并利用粒子群优化算法对控制器参数进行优化;建立了导向系统的仿真模型,通过仿真平台分析导向系统在2种特定工作条件下的系统响应,并将优化前后算法进行对比. 研究结果表明:1、2、3 kN模拟干扰力情况下,导向间隙波动幅值分别减小9.46%、9.70%、11.82%,相比于优化前的算法,优化后导向系统间隙恢复速度有所提升;优化后的算法在改善列车通过弯道及受到横风干扰时的性能方面均具有一定的提升作用,证明了优化算法的有效性及可靠性.
针对永磁磁浮“红轨”列车转向架在悬浮与导向性能上的不足,提出一种新型转向架方案并开展动力学研究. 首先,采用有限元法分析Halbach阵列磁场与磁力特性,明确永磁侧偏对导向性能及运动解耦对稳定悬浮的影响机制;其次,详细阐述新型转向架结构设计,构建车辆系统动力学模型,重点研究车辆直线运行及通过R50小半径曲线时转向架关键部件的动力学响应;最后,探究横向轮自由间隙与刚度对转向架冲击振动的影响. 研究结果表明:当横向轮自由间隙设为0,刚度值设为6 × 106 N/m时,转向架冲击振动得到有效抑制;车辆过曲线时,转向架在永磁侧偏力作用下,以横向轮紧贴曲线内侧来平衡离心力,与传统轨道车辆动力学特性明显不同;在运行速度≤60 km/h工况下,空载(AW0)状态时车辆的横向与垂向平稳性指标均优于超载(AW3)状态,且两者平稳性指标均控制在2.5以内.
为明晰落石冲击力与冲击荷载的关系,定义能反映落石、缓冲土层及结构间相互作用的综合反射系数(其值越大说明对结构的冲击效应越显著),提出基于波动理论的落石冲击荷载计算方法. 通过落石冲击上覆缓冲土层拱形结构试验研究落石冲击荷载的大小和分布特征,得到综合反射系数的取值和影响规律,并利用所提出的计算方法分析落石冲击荷载和落石冲击力的关系;进一步明确结构的落石冲击荷载在横剖面上呈对称抛物线分布,可由拱顶处最大冲击压力峰值和结构跨度控制的二次抛物线曲线方程表征. 结果表明:在落石自由下落高度10 m及缓冲土层厚2.0 m范围内,综合反射系数与缓冲土层厚度呈显著负相关性;缓冲土层厚度2.0 m时其受落石形状及下落高度影响较小,可取0.55;当厚度为1.0 m和0.5 m时,立方体落石的综合反射系数要大于球面体或锥体落石,且与落石下落高度呈正相关性;结构所受落石冲击荷载的合力与落石对缓冲土层的冲击力与缓冲土层厚度和落石形状有关,当缓冲土层厚为2.0 m时二者接近,前者稍小于后者,将落石冲击荷载合力等于落石冲击力对结构设计是偏于安全的,当缓冲土层厚小于2.0 m时则反之,且厚度越小相差的倍数越大;缓冲土层厚1.0 m时,立方体落石冲击荷载合力较落石冲击力平均增大约20倍,而球顶锥体的增大约3倍,缓冲土层厚0.5 m时,两种形状的落石冲击荷载合力较落石冲击力平均增大分别约30倍和10倍;相同条件下,立方体落石的冲击荷载合力大于球顶锥体的,且随落石下落高度增大或缓冲土层厚度减小,立方体与球顶锥体相差倍数越大.
当前电磁减振系统故障诊断方面的研究大多基于力学特征(位移信号或加速度信号)展开,而对系统内部磁场信号变化的研究相对较少. 本文以霍尔传感器检测的磁场信号为条件,基于考虑直线电机式电磁减振系统服役状态过程中各故障对气隙磁密信号的影响,对电磁减振系统有限元建模,并分析、探讨故障监测. 首先,对直线电机式电磁减振系统进行磁路分析,建立等效磁路模型,分析各故障对气隙磁密信号影响条件;然后,采用Maxwell电磁仿真平台建立电磁减振系统仿真模型,研究电磁减振系统不同故障下气隙磁场的磁通密度信号参数变化规律;最后,通过获取各故障条件下检测得到的电磁减振系统时频域故障特征信息,使用集合经验模态分解(EEMD)对信号频域特征信息进行经验模态分解,对比分析时频域特征信息,实现对各故障的监测. 研究结果表明:系统正常状态下时域峭度值为1.6,失磁及偏心故障状态下的时域峭度值分别为2.5、6.5,其频域评价指标较正常状态有不同幅度的变化,并通过实验验证了故障监测方法的有效性.
为提升磁浮平面电机发生退磁故障后的控制性能,提出一种针对永磁体阵列的剩磁补偿方法,并通过数字孪生模型对所提方法进行有效性验证. 首先,构建基于数字孪生五维模型的磁浮平面电机数字孪生框架,明确5层架构的组成部分;其次,利用磁荷节点模型探讨动子周围磁场与剩余磁化强度的关系,获得剩磁反演表达式,并在运动解耦过程中引入反演获得的剩磁数据,得出剩磁补偿后的控制电流;最后,利用不同退磁分布的磁浮平面电机孪生体数据,反演得到剩磁数值,通过多组轨迹跟踪仿真实验,对比无退磁、忽视退磁影响、剩磁反演补偿3种情况下的运动模拟. 研究结果表明:与忽视退磁影响相比,采用剩磁反演补偿方法,水平方向上进行斜坡轨迹跟踪的均方根误差减小56.5%,最大误差减小40.9%;平面运动阶跃响应稳定时间减少41.3%,超调量减少15.7%;圆轮廓跟踪时,轮廓误差的均方根减小85.0%,最大误差减小38.9%.
我国地质灾害频发,滑坡灾害因其种类多、察觉难、分布广、危害大等特点,造成的人员伤亡和财产损失位于各类地质灾害之首. 多源监测技术在滑坡预警、防灾减灾过程中起着至关重要的作用. 简要回顾多种滑坡监测技术的产生及发展历程;系统梳理近年来从滑坡的表观长期安全评估、深部牛顿力监测到微震信号感知的多源数据融合监测方法应用等一系列重要进展;概述了卫星监测智能识别技术、空天地一体化复合光纤滑坡监测技术以及NPR (negative poisson’s ratio anchor)深部牛顿力实时监测技术在滑坡识别解译、长期监测、应急响应等方面的应用研究;总结学者们在滑坡预警模型的最新成果和主要研究方向,对其评估方法及主要结论进行分类评述;分析讨论以现有滑坡监测数据为驱动,融合各类深度学习方法来预测滑坡的优势和主要存在的问题. 前沿的深度学习算法与滑坡灾变多参量高精度演化特征信息的深度融合,将引领智能化滑坡预警模型的研究迈向新的高度,成为未来探索的核心焦点.
针对高速电机和飞轮储能系统等对空间利用率要求较高的场合,提出一种新型异极径向混合磁轴承(Heteropolar radial hybrid magnetic bearing,HRHMB). 首先,建立该磁轴承的等效磁路模型,通过解析磁场得出其电流刚度、位移刚度及电磁力,并通过有限元仿真验证其有效性;然后,在相同约束条件下与传统偏置磁轴承进行对比,分析磁轴承的刚度特性和空间利用率;最后,通过有限元仿真研究新型磁轴承径向两自由度间的电磁力耦合,并与传统磁轴承进行对比. 研究结果表明:在相同承载力等约束条件下,该新型磁轴承的体积仅为传统磁轴承的0.87倍,其电磁力在控制电流和转子位移影响下的相对误差值为6.5%,而传统磁轴承的电磁力相对误差为13.6%,表明新型磁轴承径向两自由度的电磁力耦合小于传统磁轴承,解耦效果良好.
为提高某型中低速磁浮列车悬浮系统的容错能力,运用故障模式、影响及危害度分析(FMECA)方法对系统进行可靠性分析评估,识别出典型失效模式;通过专家模糊综合评价量化指标,以降低主观偏差,避免危害性取值重复的问题;利用层次分析法(AHP)对不同影响因素进行权值分配,使计算得到的各故障模式的综合危害性等级更符合实际工程需求;进一步,基于马尔可夫理论,针对综合危害性等级较高的故障模式提出改进措施;最后,研制样机并在单悬浮架试验台上开展悬浮试验与故障模拟试验. 研究结果表明:控制板、接口板和电源模块的综合危害等级最高,分别为
针对大功率架悬式永磁直驱驱动系统,研究轮对驱动系统悬挂参数对机车重建黏着性能的影响. 基于平均滑移率和动态滑移率,分析机车黏滑振动机理,并建立轮对驱动系统扭转振动的简化模型,明确悬挂参数匹配原则;搭建某机车多体动力学仿真模型,以启动工况为例,探讨轮对驱动系统悬挂参数对机车重建黏着性能的影响. 仿真结果表明,较小的轮对驱动系统悬挂刚度增大了机车发生黏滑振动的风险,提高膜片式联轴器扭转刚度和一系纵向刚度能有效增强机车的重建黏着性能,将联轴器扭转刚度从1 MN·m/rad增加到5 MN·m/rad时,机车重建黏着性能提升了约12%;不合理的悬挂参数匹配可能将导致轮对纵向-旋转振动共振,不仅加剧了轮对驱动系统结构振动,而且极大削弱机车重建黏着性能. 因此,合理匹配轮对驱动系统悬挂参数对于提高机车重建黏着性能至关重要.
常导高速磁浮道岔是磁浮交通的薄弱环节之一,其线形参数研究对磁浮道岔优化设计具有重要意义. 为探究道岔平曲线线形及参数对道岔设计的影响,首先综合分析现有常导高速磁浮交通车线几何约束关系、列车平稳舒适运行以及道岔制造与运维经济性对道岔线形的要求;其次,探究常导高速磁浮道岔曲线线形组合及关键参数取值原则;最后,提出面向低速、较高速及高速3种通行条件的道岔平面线形. 研究表明:受车线几何约束关系限制,道岔的平面曲线半径不应小于350.00 m;单圆型道岔存在侧向加速度突变,仅适用于低速通过,缓-圆型道岔占地较大,不建议采用;缓-圆-缓型道岔可根据使用需求调整参数,适用场景广泛;缓-圆-缓型道岔设计中,道岔区长度、端部横向位移、转辙角度均随着圆曲线半径增加而减小;为满足岔后横向位移的限界要求,圆曲线半径存在一最大值;转辙角度和端部横向位移均随着圆缓比的增大而逐渐增大,圆缓比值建议在2~4之间选取.
为简化钢壳-混凝土组合索塔结构构造并提升建造效率,对新型的带肋直钩钢筋剪力键进行研究. 首先,对该新型剪力键设计推出与拔出荷载试验,得到各试件的剪切承载力、拔出承载力及相应破坏特征;其次,结合有限元软件进行分析,建立试件破坏模式与承载力之间的对应关系;最后,在分析模型基础上,进一步探讨埋深对剪力键性能的影响,并提出直钩钢筋剪力键的剪切与拔出承载力计算式. 研究结果表明:直钩钢筋剪力键在剪切荷载下表现为加劲肋屈服,在拔出荷载下表现为混凝土冲切破坏,并伴随着直钩钢筋屈服,破坏模式的不同使剪力键的承载力差距最大可达5倍;推出荷载下钢混黏结力占总承载力的30%;直钩钢筋的位置决定了其在拔出荷载下的受力特点及失效模式;减小直钩钢筋与加劲肋间距后,剪力键的拔出承载力提升了35%,增大1倍剪力键埋深后,拔出承载力提升了1倍.
为研究湍流大气延迟对时序InSAR(合成孔径雷达干涉测量)高精度精细化变形提取的影响,基于湍流大气延迟在时空域上的随机特性和对形变相位的剧烈影响特征,将湍流大气延迟视为时间序列上的粗差,采用Baarda粗差探测方法予以识别和去除,随后利用时空滤波法提取高精度形变信息,并通过模拟和Sentinel-1 SAR实测数据验证方法的有效性. 研究结果表明:与仅使用时空滤波法相比,本文方法获取的模拟数据形变速率残差标准差在稳定区域和形变区域分别降低约25.8%和16.0%;Sentinel-1 SAR数据获取的半变异函数相较于同空间尺度下的原始相位结果降低约74%,优于仅使用时空滤波法的65%. 该方法成功应用于巴基斯坦拉合尔市橙线轨道交通的精细化监测,发现橙线全线约17.6%处于地面沉降强发育区.
针对横向力不足、模型不确定和时变扰动环境下永磁电动悬浮汽车横向运动控制问题,提出一种改进非线性模型预测横向跟踪控制方法(NMPC-ESO-EKF)以实现车辆横向精准控制. 首先,提出通过偏转磁轮来补偿系统横向力的横向运行模式,以此建立横向非线性动力学模型;然后,建立含有约束条件的非线性模型预测控制器(NMPC),并构造扩张状态观测器(ESO)来观测系统内外扰动以补偿控制输入,同时引入扩展卡尔曼滤波器(EKF)消除传感器测量噪声对ESO观扰的影响;最后,搭建联合仿真平台和实验平台进行仿真与实验验证. 研究结果表明:永磁电动悬浮汽车在横向运行模式下,能有效实现左右横移运动;相较于PID-EKF控制,在定常数参考信号下,NMPC-ESO-EKF超调量降低98.90%,系统调节时间缩短47.78%;在方波参考信号下,系统平均超调量和平均跟踪误差分别降低了93.77%和36.13%;施加扰动后,系统横向位移波动幅值减小34.51%,恢复时间缩短42.08%,横向控制精度与抗扰能力大幅提升,为永磁电动悬浮汽车横向控制研究提供一定参考.
针对直线磁力驱动系统的位置跟踪精度易受外部扰动等不确定因素影响以及滑模控制中的抖振问题,提出一种基于模糊变增益的超螺旋滑模控制策略. 首先,介绍直线磁力驱动系统的工作原理,建立含扰动的直线磁力驱动系统数学模型;其次,使用超螺旋滑模算法设计速度控制器,实现系统精确、快速的收敛,并通过Lyapunov函数证明系统稳定性,进一步地,使用模糊算法对超螺旋滑模增益进行自适应调节;最后,对所提复合控制方法进行实验验证. 结果表明:基于模糊变增益的超螺旋滑模控制位置跟踪精度高,响应速度快;相对于超螺旋滑模控制,阶跃位置跟踪响应时间缩短28%,稳态误差从3 μm减小到1 μm,并且没有抖振现象;正弦位置跟踪相位差减小13%,位置跟踪精度提升14%;方波位置跟踪有更好的动态性能;施加扰动后,系统到达稳态时间减小13%,受到负载之后的延迟时间减小80%,抗扰性能大幅提升.
在进行永磁轨道不平顺动态检测时,消除实测信号中由测量载体振动而产生的振动分量,有助于掌握更为准确的轨道实时状态. 将自参考自适应噪声消除方法应用于永磁轨道不平顺检测,使单一信号源实现周期性成分与非周期性成分分离,在进行不平顺管理时有效降低具有周期性特征的振动分量干扰. 对高温超导高速磁浮工程化样车及试验线开展试验研究,将单个杜瓦作为测量载体并配合霍尔传感器进行永磁轨道轨面磁感应强度测量;利用自参考自适应噪声消除方法实现对实测样本的信号分离,分离后所得周期成分为振动分量,随机成分对应实际永磁轨道不平顺. 对分离前后的信号进行时域与频域对比分析研究表明:时域信号中随机成分相比分离前波动减小,频域信号中测量载体对应的振动分量成分已被分离至周期成分中,证明了本文所提方法的有效性.
为统一描述砂土和黏土在广义应力路径下的力学响应,在具有状态参数的砂黏统一本构模型CASM的基础上,结合次加载面理论和变换应力法,提出一种适用于广义加载条件的统一临界状态本构模型(CASM-SG模型). 该模型基于原始CASM模型,结合次加载面概念建立一种与土体初始状态相关的塑性内变量,并利用变换应力法成功将原先由三轴压缩实验确定的二维屈服包面拓展到三维应力空间;构建广义应力条件下CASM-SG模型的应力剪胀关系和硬化准则等完整本构框架,并基于一致性条件推导出其塑性模量与弹塑性刚度矩阵的显式表达式;采用新提出的模型对Hostun砂土和Fujinomori黏土在排水与不排水三轴压缩及拉伸条件下的力学行为进行模拟. 模拟结果显示:CASM-SG模型能够较为准确地捕捉砂土和黏土在不同应力路径下的力学行为;对于Fujinomori黏土,三轴拉伸强度相对三轴压缩强度降低了24%左右,CASM-SG模型能够精确捕捉这一特征;相比原始CASM模型,该模型仅增加了2个具备明确物理意义的材料参数,但体现出良好的精度与简洁性兼顾的建模优势.
直线感应电机在中低速磁浮列车应用中两两相邻,磁场相互干涉. 为探究磁场干涉对相邻电机电磁力特性的影响,首先,基于麦克斯韦方程组建立相邻电机各区域矢量磁位方程,利用边界条件对各区域矢量磁位进行求解;然后,推导得到相邻电机气隙磁场、牵引力和法向力表达式,分析相邻电机磁场干涉对电机电磁力的影响,并利用有限元仿真对理论模型进行检验;最后,研究电机间距和滑差频率对相邻电机电磁力的影响. 研究结果表明:2台电机边端效应引起的行波相互影响,前一台电机(LIM1)受后一台电机(LIM2)影响较小,而LIM2则受LIM1影响较大;LIM2牵引力和法向力均随间距的变化产生波动,间距越小,滑差频率也越小,波动幅度越大,LIM2电磁力受间距影响波动幅度越大;当滑差频率为8 Hz、速度为160 km/h、电流为400 A时,LIM2牵引力相较LIM1最大可增加83%;LIM2法向力最大可减小6.6 kN,将大大减轻悬浮系统的负担. 研究结果可为直线电机在中低速磁浮列车中的应用提供理论指导和技术支撑.
高速重载是磁轴承的重要应用趋势,针对传统磁轴承承载力密度低、电磁设计与控制器设计过程脱离等问题,本文提出通过增大磁轴承工作磁密到材料饱和区,用以提高磁轴承的承载力密度;在此基础上,考虑磁轴承饱和与强机电耦合特性,开展高承载力密度磁轴承结构-控制一体化设计. 首先,考虑饱和、转子偏心等因素,建立高承载力密度磁轴承的非线性磁路模型;其次,根据动力学模型构建磁轴承结构设计与控制系统的耦合关系,同时考虑磁轴承的承载力、功放电压和系统稳定性等约束,以最小轴向长度和最大力变化率作为优化目标,建立高承载力密度磁轴承的多目标优化模型,利用NSGA-II算法求解以得出高承载力密度磁轴承的设计方案;最后,利用有限元和实验验证设计方案的可行性. 结果表明:相较于传统磁轴承,高承载力密度磁轴承的承载力密度提高了21%,实测样机支承刚度与非线性磁路计算刚度的误差在4.6%以内,能够实现高转速下的稳定运行.
用于健康监测的自感知混凝土材料是结构工程领域的新兴研究热点,但其工程应用和产业化进程还面临着一些挑战. 为进一步促进自感知混凝土在结构健康监测领域的推广和应用,介绍不同导电功能填料的掺量比例、形状特征、二次改性及与其他种类填料混杂等因素对自感知混凝土性能影响的研究,并回顾自感知混凝土功能填料的重要和阶段性成果. 结果表明:自感知功能填料的测试与标定规范尚需完善,不同的测试设备和方法会对检测结果产生明显影响,无法保证结果的可比性;有关自感知功能填料的环境适应性评估较为缺乏,复杂环境条件(温度、湿度、腐蚀等)对材料耐久性和使用寿命的影响很大,材料在实际运营下的长期稳定性欠缺研究;批量生产过程中的品质控制未得到重视:大规模生产的原材料和工艺差异会严重影响产品性能的一致性;实际工程应用案例较少,开展多参数实时监测与多功能耦合的智能自感知混凝土在大型桥梁、隧道等结构中的运营试验,能进一步补充自感知混凝土的相关数据,具有良好的研究前景.
磁悬浮直驱式无油涡旋压缩机采用电磁力非接触式驱动动涡盘运动. 本文针对压缩机系统非线性较强、PID控制下轨迹跟踪误差较大的问题设计了一种模糊PID控制器,可以在线实时修正控制参数,提高轨迹跟踪效果. 首先,介绍了磁悬浮直驱式无油涡旋压缩机的结构和工作原理,建立电磁驱动力的数学模型和系统动力学模型并进行系统稳定性分析;其次,添加模糊逻辑,进行模糊控制器设计;最后,在控制参数相同的情况下,将PID与模糊PID 2种控制下的阶跃响应与轨迹跟踪结果进行对比分析. 结果表明:相较于PID控制,模糊PID控制下,阶跃响应时的稳定时间减少了0.461 s,稳态误差减小了0.012 mm;轨迹跟踪时,
为解决磁浮交通车-桥耦合自激振动问题并指导磁浮桥梁的设计,基于模态分析法建立桥梁的数学模型,研究桥梁的参数对磁浮列车车-桥耦合稳定性的影响. 首先,以磁浮工程某外伸型高架桥梁为例,用模态分析法建立弹性支撑结构的桥梁数学模型,探讨支墩位置对桥梁模态频率的影响;其次,结合磁浮列车悬浮控制系统的模型构建车-桥耦合系统模型,通过分析其开环频率特性研究自激振动发生的原因;最后,探讨桥梁的一阶模态频率、跨径、阻尼比、线密度等参数对车-桥耦合稳定性的影响. 研究表明:桥梁一阶模态频率接近或高于悬浮临界频率易导致闭环不稳定,故一阶模态频率高于10 Hz的轻质梁易引发车-桥耦合自激振动;大跨径梁的模态频率和模态增益更低,稳定性优于小跨度梁;桥梁的阻尼比、线密度越小,不稳定的频率范围越宽;相比两端支撑梁,在桥梁长度和截面固定情况下外伸梁的一阶模态频率随跨径减小呈先增后减的趋势,其最高频率可高出53.9%,故更容易进入不稳定频率范围,因此在磁浮工程中应尽量避免使用这类短跨外伸梁.
为提升永磁电动悬浮动态稳定性及减小低速运行时的阻力,提出一种双边永磁电磁混合型电动悬浮系统. 首先,基于麦克斯韦方程组推导系统电磁力2D解析式,对解析结果进行有限元数值计算验证,并对比单、双边结构电磁力特性;然后,建立系统悬浮动力学模型,并设计加速度反馈悬浮控制器;最后,利用Simulink仿真,对比分析在加速度反馈悬浮控制和气隙反馈PID控制下,系统受到轨道及载荷扰动时的气隙、加速度及电流波形. 研究结果表明:双边结构可有效增加系统浮阻比,100 km/h运行时单、双边结构浮阻比分别为3.18和15.43;当系统受到±1 mm轨道扰动时,控制器能使系统振动加速度及悬浮气隙分别快速稳定于0和20 mm额定位置;当系统受到±
为研究曲线以及列车状态对浮置板轨道振动响应的影响,在直线及曲线等多个地段的浮置板上安装便携式智能传感终端,测量列车通过时浮置板的振动加速度并计算相关位移;对比分析直线和曲线区段浮置板轨道的加速度、位移等振动特征,进而掌握其振动特性的差异;获得同一位置处不同列车通过时浮置板的振动特点,识别列车是否存在车轮不圆顺等病害. 研究结果表明:曲线地段浮置板轨道振动加速度大于缓和曲线地段和直线地段的,其中位于半径为500 m的浮置板板端垂向加速度95%分位数峰-峰值约为直线地段的5倍~10倍,而三者的垂向位移相差不大;相比与正常列车,车轮多边形列车通过浮置板时造成的加速度更加明显,垂向加速度95%分位数峰-峰值约为其3倍,而垂向位移基本相近;通过分析二者振动差异绘制的‘车辆谱’,能够辨识车轮不圆顺等病害,可为地铁浮置板区段的车辆病害快速检测提供技术参考.
震后迅速获取同震滑坡分布及灾情评估对于应急救援和重建工作至关重要,采用IDNPM (InSAR data-newmark physical fusion driver model)方法对2023年12月18日甘肃积石山地震引发的滑坡进行快速评估,以期迅速精准掌握滑坡灾害的宏观分布. 首先,通过时序SBAS-InSAR揭示该地区有着严重的冲沟发育和溯源侵蚀现象,这些地质特征为滑坡提供了有利的孕育环境;其次,运用IDNPM方法对积石山地震进行滑坡快速评估,预测出赵木川村、塔沙坡村、大河家镇等地的陡峭斜坡及沟壑两侧为地震诱发滑坡的高风险区域;最后,综合实地考察、数值模拟及卫星识别技术,验证该模型在实际应用中的可靠性. 结果表明:全区共有2.657%的高风险区,需要重点关注此类区域;对已发生崩滑的坡体紧急清理和加固,对于未发生滑移的区域,应采取监测和评估措施,以防范可能发生的震后次生滑坡事件;研究成果可为受灾区的灾后应急救援和恢复重建工作提供有力的数据支撑.
为探明板式橡胶支座在老化情况下的摩擦滑动性能,基于支座规范中抗剪老化的有关规定,对支座开展热老化试验及拟静力试验. 首先,构造桥梁工程中真实的支座工作状态;其次,通过老化箱对支座样本进行热空气加速老化处理,并通过压剪机对支座进行水平循环拟静力加载;最后,对比分析支座试件在不同加载条件下的变形状态、滞回行为及相关力学响应. 研究结果表明:在加载过程中老化试件的剪切变形程度较大,滑动程度较小,滞回环较狭长;支座的滑动位移与面压、加载速率呈负相关;支座剪切刚度随等效剪切应变先减后增,老化试件的剪切刚度降低,等效刚度增大;在支座使用阶段平均面压10 MPa下,2类试件的摩擦系数差异不大,均低于规范建议值0.20;老化试件的摩擦系数普遍大于未老化试件,而耗能不充分;未老化试件存在性能变化点,整体力学行为为三折线趋势,而老化试件的摩擦滑动行为稳定,在0~250%等效剪切应变过程中未出现突变点.
为提高超导电动悬浮系统性能,基于全局灵敏度分析和多目标优化算法,提出一种非对称悬浮线圈优化设计方法. 首先,基于空间谐波法建立超导电动悬浮系统的数学模型,计算超导磁体的磁感应强度以及悬浮线圈的电磁力;其次,对此模型进行非对称优化设计,采用Sobol’敏感性分析方法,以悬浮力和每公里悬浮线圈质量为目标,计算各设计参数的灵敏度,并基于灵敏度分析结果进行非支配排序遗传算法Ⅱ(NSGA-Ⅱ)优化设计;最后,通过有限元进行仿真分析,验证空间谐波法解析模型,并对优化前后的模型进行比较. 研究结果表明:空间谐波法建立的悬浮系统模型与有限元模型具有一致性;相比优化前,优化后的非对称悬浮系统悬浮力提高8.3%,每公里铺设线圈质量降低12.9%;垂直位移0.02~0.04 m时,悬浮力由262.2 kN增加到270.2 kN,磁阻力由4.5 kN增加到5.4 kN;水平位移0.17~0.20 m时,悬浮力由306.5 kN减小到228.8 kN,磁阻力由6.2 kN减小为4.6k N;悬浮力、磁阻力的波动分别约为6%、65%. 研究揭示了悬浮力和磁阻力随着位移方向的变化规律,验证了非对称设计在提升悬浮力和轻量化方面的优势,为超导电动悬浮系统的优化设计提供理论参考.
为准确高效评价轨道减振性能,德国标准DIN V
为揭示西藏普兰地区冰碛土的力学行为,对天然状态表层冰碛土开展法向压力为100~400 kPa的现场直剪试验,对96%压实度冰碛土开展法向压力为100~400 kPa的室内大型直剪试验及围压为100~400 kPa的室内大型三轴试验. 试验结果表明:西藏普兰地区冰碛土91.7%压实度的天然状态下内聚力为11.0 kPa,内摩擦角为41.0°;在96%压实度时,内聚力为9.4~11.2 kPa,内摩擦角在45.3°~46.7°,且室内大型三轴试验所得强度参数高于大型直剪试验;96%压实度下冰碛土峰值强度高于天然状态,但初始阶段模量小于天然状态冰碛土;各级围压下,冰碛土应力-应变曲线均呈现软化特性,峰值应变随围压的增加先增大后减小;修正的邓肯-张模型可以较好地描述冰碛土偏应力与轴向应变关系,并体现普兰地区冰碛土的应变软化特性.
针对传统碳纤维增强复合材料(CFRP)板锚具压应力沿横向分布不均匀,导致张拉过程中板材易发生撕裂破坏的问题,研制了一种CFRP板新型夹持式锚具. 新型锚具在中轴线上布置预压螺栓,同时设定螺栓长度,通过控制螺栓的位移量对CFRP板施加定量的压紧力,分析新型锚具的受力机理;使用有限元软件ANSYS进行模拟,分析影响锚固性能的关键因素;对厚度为2 mm、宽度为50 mm的CFRP板进行静载张拉试验. 研究结果表明:1) 新型锚具的锚固性能与夹片厚度、外夹板厚度及螺栓预紧力密切相关;当夹片厚度为20 mm时,横向上CFRP板的压应力分布较均匀,最大与最小压应力之差仅为9.8 MPa;当上、下外夹板的厚度分别为30 mm和20 mm时,各构件的弯曲应力均保持在安全范围内;当螺栓预紧力为170 kN时,CFRP板的压应力水平显著提高,而剪切应力始终处于较低水平. 2) 在静载张拉试验中,新型锚具承受的最大张拉力为260.7 kN,锚固效率达到了108.63%;CFRP板的破坏形式为炸丝破坏,未出现撕裂等异常破坏形式,锚具的静载锚固性能优异.
本文针对高速磁浮列车悬浮系统中不确定性参数对系统动态响应的影响展开研究,旨在为磁浮列车的优化设计提供理论依据. 首先,将高速磁浮列车悬浮系统简化为包含二系悬挂的单点悬浮系统,并构建相应的多项式混沌展开(PCE)模型;在此基础上,采用Sobol’ 法进行全局灵敏度分析,相较于在原始模型上进行蒙特卡洛仿真求解Sobol’ 灵敏度的方法,基于PCE模型的求解方法将计算效率提升了73倍,且计算误差控制在0.004以内;进一步地,深入分析车辆结构参数、轨道不平顺参数以及悬浮控制参数对悬浮系统间隙响应和车体垂向加速度的影响规律,识别了关键影响参数及其交互效应. 研究结果表明:电磁铁线圈匝数和电磁铁铁芯有效面积对车体垂向加速度及悬浮系统间隙响应影响较大,总灵敏度指数均大于0.2,而电磁铁质量和二系悬挂参数对其影响相对较小,总灵敏度指数均小于0.1;列车运行速度与轨道不平顺波长对悬浮间隙和车体垂向加速度的影响显著,总灵敏度指数均大于0.8,且二者之间存在明显的交互作用;在悬浮控制参数中,间隙响应对比例系数的变化最为敏感,总灵敏度指数接近1.
针对磁悬浮铣削电主轴在切削加工过程中因切屑不断进入、离开刀具容屑槽导致系统质量大小和分布不断变化,进而引起系统动力学特性的非线性变化问题. 首先,依据金属连续切削原理求得单个切屑质量,并结合连续梁振动理论,应用有限单元法建立“磁悬浮轴承-电主轴-刀具-切屑”时变质量系统的动力学模型;然后,采用龙格库塔法对系统的运动微分方程进行求解,分析切屑从进入到离开容屑槽的整个过程,切屑质量变化对系统固有频率、振型的影响规律;进而探索由时变切屑质量所引起的旋转惯性载荷、陀螺力矩、切削力、磁悬浮轴承电磁力等激励下的系统振动响应规律;最后,利用MATLAB软件对系统进行仿真求解. 结果表明:切屑质量从0增大到2.08 × 10−5 kg时,系统前三阶临界转速分别下降约2.3、0.7、0.3 r/min,可知时变切屑质量对系统固有特性影响较小;旋转惯性载荷对系统的动态响应有较大影响,尤其是对切削加工点,使切削点的径向振动响应和角向振动响应的幅值出现0~9.7 × 10−7 m和0~2.5 × 10−5 rad不等的增大,还使加工点处径向振动和角向振动平衡位置的偏移距离分别增加约5.1 × 10−7 m和9.3 × 10−6 rad.
富水破碎不良地质区在隧道施工中容易诱发涌水灾害,为准确分析隧道围岩的富水破碎风险,且满足自动化、定量化风险分析需求,基于开挖数据构建模糊贝叶斯网络风险评估模型,通过隶属函数量化地质参数的不确定性,并结合贝叶斯概率推理,融合隧道地震预报法与瞬变电磁法的探测数据,得到围岩富水破碎风险概率;进一步利用三维体素模型将风险概率映射至三维坐标,可视化表达风险的空间分布特征. 选取典型长大深埋隧道进行实验分析,结果表明:评估模型对地下水情况与岩体完整性分类准确率分别为80.91%和82.81%,且不受数据完备性限制,能够在单一或多源数据条件下完成定量分析;所建三维体素模型为风险防控提供有效参考,其中,相较于单一数据,多源数据融合分析结果与现场揭露的富水区、破碎带位置吻合度更高.
超导电动悬浮列车设计速度达到600 km/h,车体附近流动加剧,受到的气动荷载也急剧增加. 为研究超导电动悬浮列车气动荷载作用下车辆的悬浮状态,基于有限元方法,采用SST
为研究高速列车经过钢管混凝土系杆拱桥时对吊杆造成的疲劳损伤,依托广西钦州钦江大桥为背景开展现场动载试验,对桥梁模态、位移、加速度和动应力进行测试;利用有限元软件ANSYS建立桥梁模型,通过对比实测频率、振型来验证桥梁有限元模型的正确性;将桥梁模型与多体动力学软件SIMPACK建立的CRH2列车模型结合,实现车-桥耦合并进行联合仿真,通过将相同工况下的模拟计算结果与实测结果对比,验证车-桥耦合振动系统的可靠性,并在此基础上依据Palmgren-Miner线性疲劳损伤准则,研究不同行车速度和轨道平顺度对吊杆的疲劳损伤. 结果表明:联合仿真计算效率高,其计算结果可靠;系杆拱桥短吊杆相较于长吊杆,对不同车速、轨道平顺度造成的耦合振动更为敏感,列车以190 km/h过桥时对1# 吊杆的疲劳损伤为7# 吊杆的3.5倍;吊杆疲劳损伤度随着车速的增加呈波浪式递增趋势,且存在接近桥梁固有频率下的临界速度;桥梁轨道平顺度的优化与恶化成倍影响着吊杆的疲劳损伤.
裂缝检测作为混凝土结构健康监测的重要内容之一,反映了结构受力及损伤状态,其检测及评估是保障结构安全服役的核心技术. 传统的检测方法时空上覆盖范围有限,受环境、高空等因素影响较大,检测效率及精度相对较低,且较依赖于主观判断,易造成漏检与误检. 基于计算机视觉的检测方法通过搭载数字成像设备进行数据采集、输入、图像处理,对混凝土表面进行自动分析和识别,具有高效、准确、客观等优点,在混凝土结构裂缝智能检测领域应用广泛. 从图像采集、图像处理、识别算法和结构评估4个方面详细阐述基于计算机视觉的混凝土裂缝检测原理、方法和应用;综合评述数字成像技术中裂缝图像采集设备及各种图像预处理方法的适用情况,并分析不同识别算法的优缺点及适用性;与此同时,总结凝练当前研究的不足,分析计算机视觉技术在设备智能化、网络轻量化等方向上的应用及研究中面临的挑战和问题,并提出相应的解决措施,从多源数据融合利用、智能设备轻型化、数字成像与裂缝映射、结构评估高效性及实时性等方面进行展望.
针对隧道内部运输组织管理停留在宏观组织策略层面,缺乏对施工车辆时刻表和运行路径做出精细化决策的问题,针对长大隧道内部交通网络,绘制隧道内部交通网络拓扑图,构建考虑交通冲突的长大隧道内部多工种施工车辆时刻表和运行路径优化模型,在疏解隧道内部车流间交通冲突的前提下最小化施工车辆的总运行(行驶)时间,以提高生产效率;在此基础上,将优化模型进行线性化处理,重构为整数线形规划模型,通过GUROBI求解器进行求解. 研究结果表明:隧道运输组织方案在优化前后,车辆的总运行(行驶)时间保持512 min不变,而交叉冲突从19个减至0个,相向冲突从2个减至0个,即优化方案在不增加施工车辆总运行时间的前提下,完全避免了交通冲突,保证施工车辆的运输安全,具备可实操性.
为减少起伏地形下传感器节点的部署数量,首先,采用数字高程模型与Delaunay三角剖分对起伏地形表面建模,确定节点部署问题解空间;然后,建立节点部署算法搜索维度与网络覆盖率之间的函数关系,以网络连通为约束、网络覆盖率最大化为目标,并基于改进海洋捕食者算法,搜索形成候选个体集;再以收益遗憾最小化为准则,使用候选个体衍生新个体;最后,将网络覆盖率、网络密度作为指标构建筛选函数,选出最佳新个体并纳入到部署节点集合. 仿真结果表明:在地形粗糙度为1.9、目标覆盖率为80%~100%时,与同类部署算法相比,所提算法的节点部署数量降低2.9%~69.1%;在地形粗糙度为1.3~2.5、目标覆盖率为100%时,所提算法的节点部署数量降低3.1%~74.0%,网络生命周期有所延长.
相较传统轮轨交通方式,磁浮列车具有速度快、噪音小、平稳性高、维护成本低等不可替代的优势,为实现磁浮列车在复杂扰动环境下的精准速度运行控制,提出一种参数自整定的自抗扰控制(ADRC)方法. 通过受力分析建立磁浮列车纵向动力学模型,用于描述运行控制过程中的非线性迟滞特性;将模型不确定参数及外部扰动等因素归纳为扩张状态,设计三阶扩张状态观测器实时观测扩张状态,并基于李雅普诺夫稳定性定理对观测器的收敛性条件进行分析;针对传统ADRC控制参数多、调参困难的问题,引入多种群遗传算法(MPGA)实现参数自适应优化和调整;利用磁浮列车现场运行采集的数据开展仿真实验. 结果表明:相较传统ADRC,MPGA-ADRC在速度控制精度方面提升22.7%,跟踪平稳性提升25.6%,所提出的方法能够有效提升磁浮列车运行的稳定性和乘坐舒适性.
为研究高频注入响应电角度相移对磁浮列车低速控制精度的影响,考虑控制延时与采样延时对角度偏差滞后的约束关系,提出一种无传感估计角度偏差最小化寻优的补偿方法. 首先,建立高速磁浮长定子同步电机零低速高频方波信号注入模型,利用估计-实际-延时坐标系变换理论,构建高频响应电流模型;其次,通过分析大功率电传动系统中系统延时对角度偏差的影响,重构含估计角度相移偏差的高频响应电流模型;然后,设计离散化的估计角度偏差目标函数,提出采用考虑梯度变化的二分法在线计算系统延时与角度偏差;最后,通过磁浮电机低速试验平台验证算法. 试验结果表明:本文提出的考虑相移滞后补偿方法与未经补偿的无传感控制相比,当给定电流为20、21、22 A时,估计角度误差分别减小73.3%,70.4%和72.1%;当速度环给定速度为0.8、0.9、1 m/s时,估计角度误差分别减小67.9%、70.5%、75.5%,速度跟踪误差平均减小50%.
为克服超前导洞用于软岩隧道围岩大变形控制时存在的局限性,深入分析软岩大变形特征及其存在的问题,提出基于“超前应力释放 + 环向(滞后)注浆 + 加长锚杆”的变形控制方式. 首先,借助软岩峰后刚度与强度统一劣化模型与统一强度准则得到超前导洞及正洞围岩的弹塑性解;然后,利用FLAC3D有限差分软件实现软岩峰后刚度与强度统一劣化模型的本构开发,得到超前导洞及正洞围岩的变形及应力分布;最后,对软化模量、注浆参数、超前导洞半径和两掌子面间距等影响因素进行分析. 研究结果表明:超前导洞可以有效释放围岩挤压变形,岩体松动破碎是造成释放层及正洞围岩变形过大、稳定性下降的主要原因,环形(滞后)注浆可以有效控制扩挖过程中的围岩松动变形,并改善围岩应力分布,提高围岩承载能力;软化模量取值越大时超前导洞围岩变形越大,注浆参数取值越大时正洞围岩变形越小,增大超前导洞开挖半径、增加两掌子面间距(超前导洞及正洞)均可使初始地应力释放更加充分.
混合配筋预应力混凝土(PRC)管桩受预应力控制水平、混合配筋等因素影响,实际抗弯承载力与理论设计值存在偏差,致使其服役过程中存在桩身破坏或性能退化等潜在风险. 为研究PRC管桩实际抗弯承载性能表现,开展不同预应力水平、混合配筋情况下PRC管桩抗弯载荷试验研究. 荷载试验采用单调连续加载方式,记录不同PRC管桩桩身弯矩-挠度曲线,确定其抗弯载荷变化规律,最终对试验所得数据与现行标准中相关弯矩承载力理论计算值进行对比验证. 研究结果表明:混合配筋方式提高了桩身承载力及延性,初始预应力张拉控制比例越高,试件的弹性变形段越长,开裂弯矩越大,裂缝出现延后,初始预应力为0.5倍张拉力时试件的延性最好,弯曲变形延性大于10,最大挠度超过54 mm,裂缝宽度为1.05~1.50 mm;PC钢棒和螺纹钢同时张拉的构件变形相对趋缓,延性和韧性更好;非预应力钢棒参与预应力贡献时,极限弯矩提高约2.5%,弹性阶段结束时的开裂挠度更大;不同预应力PRC桩开裂弯矩实测值为设计理论值的1.25~1.50倍,极限弯矩实测值为理论值的0.96~1.07倍.
为研究黄土场地地铁车站的地震易损性,以黄土地区某典型两层三跨地铁车站结构为例,基于黏弹性边界的地震动输入方法对该地铁车站结构进行增量动力分析(IDA),对37个地震动强度指标的有效性、实用性和效益性进行综合评价,选出适合该场地条件和车站结构断面形式的地震动强度指标,并采用双参数对数正态分布模型建立该地铁车站结构的地震易损性曲线和破坏状态概率曲线,以此得到该地铁车站结构在某一强度地震作用下各性能水准的超越概率和发生不同破坏状态的概率. 结果表明:加速度、速度相关型指标更适合作为地震动强度指标来预测地下结构的地震响应,位移相关型以及比值型指标不宜作为地震动强度指标;多遇地震作用下车站结构发生破坏的概率较小,设防地震作用下车站结构以轻微破坏为主,罕遇地震作用下车站结构以轻微破坏和中等破坏为主. 研究结果可为黄土地层基于性能的地铁车站的抗震设计提供参考.
为优化有砟道床的劣化评估与养护维修,针对道砟颗粒破碎过程及破碎机理的研究具有重要价值. 通过对单个道砟颗粒进行单轴压碎实验,确定破坏所需的等效应力,依据道砟颗粒的破碎过程和加载力对其受载变形行为进行分析;通过激光光栅扫描道砟颗粒的几何外形,使用最小外接矩形法对其进行规定,同时,采用刚性块进行道砟颗粒填充,并与传统球颗粒填充方式作对比,分析了使用刚性块所构造道砟颗粒的破碎过程以及道砟颗粒内部微裂纹萌生情况;此外,研究不同几何外形道砟颗粒的离散元接触参数,采用遗传算法优化的神经网络模型(GA-BP)预测不同等效粒径道砟颗粒对应的黏结强度. 研究结果表明:在离散元中,道砟颗粒的黏结强度随着等效粒径的增加而增加, 当等效粒径为[25,39)、[39,48)、 [48,56)、[56,64)、[64,80) mm时,对应的平均黏结强度分别为151.85、159.45、166.71、175.29、185.29 MPa.
为评估磁悬浮流体机械设计的合理性和运行的可靠性,应用API617标准对其振动和稳定性进行分析. 首先,对API617标准中关于磁悬浮流体机械的相关规范和要求进行介绍;然后,以一台磁悬浮风机为研究对象,基于API617标准开展转子动力学分析、闭环传递函数测试、振动分析、稳定性评估等工作. 结果表明:各项指标均满足API617标准要求,转子运行转速与临界转速之间的分离裕度为69.7%和53.8%,设计合理;磁悬浮转子系统建模准确,可用于预测转子的动力学行为;径向磁悬浮轴承系统灵敏度传递函数峰值均处于等级A范围内,轴向磁悬浮轴承处于等级B范围内,满足长期稳定运行要求;运行转速范围内转子振动小于10 μm,远小于振动极限要求.
为研究钢结构桥梁涂装层的力学本构模型,以长效型涂装体系为试验对象对其分别进行单轴拉伸试验,得出面漆、中间漆、底漆和复合涂层的应力-应变曲线;通过无量纲化处理获得长效型涂装体系上升段本构方程的统一表达形式,并针对每种漆膜适用条件给出相应的本构方程. 研究结果表明:1) H06-X环氧富锌底漆(含锌量80%)和长效型复合涂层的应力-应变曲线分为弹塑型阶段、应变强化阶段和破坏阶段;H06-C2环氧厚浆云母氧化铁中间漆的应力-应变曲线分为应变强化阶段和破坏阶段;E01-JY氟碳面漆的应力-应变曲线分为近似线弹性阶段和破坏阶段. 2) 依据应力-应变曲线得出了底漆、中间漆、面漆和复合涂层的弹性模量、泊松比、剪切模量、单轴拉伸强度、拉伸断裂应变等力学性能特征参数;底漆的单轴拉伸强度最强,中间漆次之,面漆最差;面漆的变形性能最佳,中间漆次之,底漆最差.
川西北地区千枚岩土石混合体分布广泛,在降雨条件下开挖边坡极易大面积失稳,对该地区交通工程施工和运营安全构成了重要威胁. 土石混合体渗透特性显著影响开挖边坡稳定性,而扁平状千枚岩块的空间定向性是影响千枚岩土石混合体渗透性的关键因素. 本文基于千枚岩岩块的空间定向特征,采用自行研发的大型渗透仪开展不同含石量、岩块粒径等条件下的千枚岩土石混合体渗透特性试验,研究含石量、岩块粒径对此类混合体渗透性的影响. 结果表明:当含石量从0%增至35%时,土石混合体渗透系数降低49.28%,临界和破坏水力梯度分别升高159.38%和54.17%,难以发生管涌破坏现象;当岩块粒径从20~40 mm增至60~80 mm时,其渗透系数增大34.62%,临界和破坏水力梯度分别降低23.15%和10.3%,更易发生管涌破坏等现象;可为川西北地区千枚岩土石混合体的水力特性评价及开挖边坡稳定性分析提供参考.
为研究高温对砂岩物理力学性能劣化的影响,本文开展不同温度热处理砂岩的单轴压缩试验. 首先,分析力学强度和破断模式,获得砂岩宏观力学参数的劣化特征;其次,研究不同温度对砂岩能量演化机制及弹性能耗比的影响;最后,基于温度和荷载损伤因子,采用分段函数方法构建考虑裂纹闭合阶段的热-力耦合损伤本构模型. 研究结果表明:随着温度的增加,砂岩峰值强度和弹性模量先增加后减小,在200 ℃时达到最大值;破断模式由倾斜剪切破坏向“Y”型共轭拉-剪混合破坏转变,脆-延性转变的临界温度阈值为400 ℃;根据耗散能演化特征将整个变形破裂过程划分为裂纹闭合阶段、弹性阶段、宏观裂纹扩展阶段和峰后阶段;弹性能耗比(
外部压力对锂金属电池的性能起着至关重要的作用. 为研究锂金属电池在不同压力条件下宏观电池性能表现和微观锂沉积特性,首先通过加压试验及电子显微镜扫描验证施加外部压力有助于改善锂金属负极表面形貌,为揭示其作用机理,并将非线性相场模型与力模型耦合,分析微观不用压力条件对锂的沉积形貌及内部应力分布的影响. 研究结果表明:在没有外部压力作用时,锂金属电池对外膨胀加速了锂枝晶的持续生长,导致容量快速衰退;模拟数据显示,随着外部压力的逐渐增大,锂枝晶的主轴长度由2.04 μm降低到1.1 μm,宽高比由0.32提升至0.79,这种光滑粗壮的形貌演变显著降低锂枝晶的比表面积,但同时也增加了力学不稳定性. 本文所提供的在不同外部压力下锂枝晶的相图,为锂金属电池压力管理设计提供理论支持.
为优化T型加固斜材构件的加固方案,通过理论分析、试验研究和有限元分析研究构件的结构和材料参数对加固后承载力的影响. 首先,基于组合梁理论,建立T型加固截面的理论模型,进而分析T型加固的抗弯刚度提高程度;其次,进行单面连接角钢T型加固的偏心受压静力试验;最后,通过有限元模型分析长细比、宽厚比和材料强度对夹具数目选择的影响. 研究结果表明:T型加固的抗弯刚度提高程度随着荷载的增大而减小;夹具数目减小会导致垂直于构件变形方向的相对滑移;针对试验构件,夹具数目越多承载力越大,最大加固效果为100.4%;针对斜材的T型加固方案,长细比低于150时选用2个夹具即可,反之,则需要3个夹具;宽厚比和材料强度不会对夹具的选择造成影响.
为实现赤泥基胶凝材料在道路工程中的安全应用,研究赤泥基稳定碎石基层在冻融循环作用下力学性能与质量的变化规律,采用工业CT扫描、扫描式电子显微镜与能谱仪(SEM-EDS)等方式探究冻融温度与次数对力学性能和质量损失的作用机制. 研究表明:20~−20 ℃、28 d条件下胶凝材料5%掺量最大质量损失率为1.85%;5%和6%赤泥基胶凝材料掺量下稳定碎石质量损失率变化幅度高于掺量7%和8%掺量下的变化幅度,且随着冻融循环次数的增加,质量损失率不断增加;通过工业CT与SEM-EDS微观分析,随着冻融循环次数增加,稳定碎石孔隙率增大,养生28 d、6%掺量稳定碎石经历20次冻融循环后,孔隙率增长1.53%,内部裂缝损伤增多并不断积累,呈现由少变多、由窄变宽的变化规律;研究结果对交通工程绿色建设和赤泥大宗量利用具有积极推动作用.
竖向刚度对保证高速磁浮列车在桥上行车安全和乘坐舒适性具有重要意义,是桥梁的重要设计指标之一. 以某3跨连续梁为研究对象,调整截面惯性矩改变桥梁竖向刚度,在不同车速、额定悬浮间隙及温度作用下进行磁浮列车-桥耦合振动分析,讨论桥梁动力系数、车体加速度和悬浮间隙动态变化量随桥梁竖向刚度调整系数的变化规律. 结果表明:刚度调整系数下降至0.75,桥梁动力系数迅速增加,车体竖向加速度相较于悬浮间隙动态变化量对桥梁竖向刚度变化更敏感;车速越大、考虑降温变形时,桥梁竖向动力响应越大,轨道不平顺和额定悬浮间隙对动力系数影响不明显;车速越大、额定悬浮间隙越小,考虑轨道不平顺和降温变形影响时,相同车辆动力响应大小对应的桥梁竖向刚度调整系数越大.
针对动车组电缆终端绝缘现有检测手段复杂,易受到现场噪声干扰,检测效率不高的问题,提出一种基于电场强度的电缆终端绝缘状态检测新方法. 首先,制备不同长度的预制气隙缺陷动车组电缆终端;其次,获取预制气隙缺陷电缆终端样本的高频脉冲电流信号;最后,利用电场传感器测量不同缺陷长度的电缆终端电场强度值. 研究结果表明:通过缺陷电缆终端高频脉冲电流峰值信号以及电场强度特征,可将电缆终端缺陷发展划分为
为准确评估长短腿输电塔整体安全水平,依托某500 kV输电线路工程,建立长短腿输电塔精细化数值模型,根据《架空输电线路杆塔结构设计技术规程》(DL/T 5486—2020)以及数值分析结果,给出长短腿输电塔不同失效模式下的功能函数,并结合等价极值事件原理加以等价描述;随后,基于低偏差序列方法生成随机样本点,计算样本响应并获得等价功能函数统计矩;最后,通过改进最大熵法计算长短腿输电塔整体可靠指标. 分析结果表明:本文方法所计算的长短腿输电塔整体可靠指标的相对误差和计算成本分别为Monte Carlo法(MCS)的0.46%和0.05%;单一失效模式下得到的长短腿输电塔可靠指标较整体可靠指标偏低,建议采用整体可靠指标衡量长短腿输电塔的安全水平;塔腿级差和长短腿输电塔整体可靠指标成反比,16 m级差工况下的长短腿输电塔整体可靠指标较等长腿降低了15.72%,设计时应避免级差过大的情况.
为实现山区铁路“路基-环境”高质量协调发展,提出一种“路基-环境”耦合优化调控方法. 首先,对于铁路“路基-环境”相容共生进行定义,构建绿色要素指标体系,并结合耦合魔方游戏模型明晰耦合调控框架;其次,利用耦合协调度模型、施压承载模型及各关键要素间的函数关系共同构建“路基-环境”调控优化目标函数及约束条件,将路基工程绿色关键要素作为主控变量,采取智能优化算法(CSA)进行求解,得到相容共生状态下的各主控变量最优解;最后,以某山区铁路路基为例进行实证分析. 结果表明:当各主控变量路堑开挖尺寸、路堤填筑尺寸、支挡结构设计、支挡结构布设、工程防护结构设计、边坡工程防护布设、植物防护结构设计、边坡植物防护布设、生态声屏障结构设计、生态声屏障布设依次分别优化36.83%,43.14%,49.93%,68.91%,69.98%,68.91%,23.42%,68.91%,19.64%,19.60%比例时,可以实现铁路“路基-环境”从初级协调状态向中级协调状态的演化,研究结果验证了构建的“路基-环境”调控优化模型的合理性以及CSA算法求最优解的有效性,为实现山区铁路路基工程绿色化建设提供了科学参考.
为研究冻融循环作用下硫酸盐渍土热-质迁移规律及结构损伤机理,以河西走廊盐渍土为研究对象,在无压补给条件下进行冻融循环试验,并借助核磁共振和SEM(Scanning Electron Microscope)试验分析冻融循环前、后硫酸盐渍土的孔隙结构损伤机理. 研究表明:冻融循环作用下硫酸盐渍土内温度传递存在“深度效应”和“时间滞后效应”,时差约为5 h;冻结深度前期不断向下发展,后期逐渐趋于平稳,最大冻深为8.54 cm;溶液补给量随温度降低而增大,升高而减小;冻融循环240 h后水、盐含量在冻结区增大,非冻结区基本不变;盐渍土盐冻胀变形随温度变化呈周期性盐冻胀-融溶沉规律发展,且存在位移滞后温度效应;盐渍土经历一系列反复“冻结-冷凝-结晶-融化-溶解”过程后,中孔隙和大孔隙明显增多,并形成贯通的裂隙,土体结构由冻融前的片层状结构转变为絮状结构.
高效的铁路工程地理地质知识服务是支撑数字孪生铁路多尺度多专业智能应用的重要基础. 为提高数字孪生铁路 “区域-工程-施工面”多尺度应用中的查询检索完整性和协同耦合分析能力,构建地理地质知识动态分布的元网络模型,设计以铁路多专业用户、业务部门、知识关联关系、多尺度应用场景为节点的知识库分布网络体系;实现分布优化的元网络打击算法,基于度中心度指标计算节点重要性,通过扰动分布关系网络分析分布影响力,计算节点的影响范围并得到知识库的分布优化结构;以某铁路特大桥工程的数字孪生铁路知识库管理及应用为实验场景,采用本文方法对已有知识库分布结构进行优化. 实验结果表明,在处理工程尺度和区域尺度的知识检索任务时,分布优化方法提高了查询检索结果的数量,缩短了查询检索时间,并提高了结果的匹配度.
为研究多车道排水沥青路面在极限降雨强度下的水膜厚度变化规律,基于排水沥青路面渗流特性,在室内铺筑了多车道排水沥青路面足尺试验段,测量不同降雨强度下路表水膜厚度,分析水膜厚度随降雨强度和路面排水路径长度等影响因素的变化规律,构建强降雨下排水沥青路面水膜厚度预估模型,并在广西南宁绕城高速对预估模型进行现场验证;基于水膜厚度预估模型,提出排水沥青路面不出现水膜的极限降雨强度. 研究结果表明:排水沥青路面表面的实测水膜厚度随着路面排水路径变长而增加,且随降雨强度增大而急速增加,在雨量不大的中小雨阶段,在距道路中心3 m范围内不会出现水膜;水膜厚度随降雨量、排水路径长度增大而增大,而随路面厚度、坡度和空隙率增加而减小;在排水路径长度不超过2 m时,排水沥青路面可承受特大暴雨而不会出现水膜,当排水路径长度超过10 m后,降雨强度达到大雨等级会形成路表水膜.
为解决铁路站场接触网点云噪声分布不规律及语义分割难度大的问题,提出一种智能提取方法,以增强接触网异常检测能力. 首先,对站场接触网场景数据进行深入分析,构建导线及钢轨顶面点云提取的知识框架;其次,考虑站场接触网点云空间特征,设计站场关键要素点云的分割与融合滤波方法;然后,建立站场接触网强空间语义约束规则,提出知识引导的导线特征智能精细提取方法;基于此,采用WHU-TLS等站场点云数据集,搭建实验平台并开展实验分析,实验结果表明:在部分点云缺失以及噪声干扰等复杂环境下,本文方法易于操作且自动化程度高,相比传统导线特征提取方法耗时最少,100 m范围内站场接触网导线特征提取的平均精度达到±5 mm,能够有效支撑铁路站场接触网几何特征的智能检测.
针对主动磁悬浮轴承转子位置控制中系统响应速度慢、抗干扰能力弱等问题,本文提出将非奇异快速终端滑模函数与改进超螺旋趋近律相结合的位置控制方法,以获得快速、精确的动态响应控制效果. 由于系统内扰和外扰的存在,需要对滑模趋近律增加常值切换增益以保证系统的强鲁棒性,但会使得系统抖振进一步变大,本文通过采用非线性扩张状态观测器对干扰进行实时观测并动态补偿,折衷了抖振与抗干扰性之间的矛盾;通过李雅普诺夫稳定性理论证明了所提方法的稳定性,并对提出的控制方法进行仿真与实验验证. 研究结果表明:与传统的滑模控制器相比,所设计的控制器具有更快的响应速度和更强的抖振抑制能力,转子达到目标位置的时间缩短了56.4%,系统动态性能得到改善;控制电流的平均值减小了68.5%,系统抑制抖振的能力增强,即算法具有较强的鲁棒性.
为分析高层建筑上外伸肋板的抗风工作机理,利用大涡模拟(LES)评估大气边界层来流下水平肋板对高层建筑的流场和风荷载的影响,对比不同类型水平肋板的抗风效果. 结果表明:水平肋板明显抑制了侧风面分离涡的形成,并拉长了尾涡;肋板会显著抑制建筑附近的竖向流,并在其附近诱导形成局部旋涡,最终导致近壁流动形式明显变化;流场的变化会影响风压分布和风荷载,水平肋板使建筑表面平均风压系数沿高度呈“之”字形分布,水平板明显降低侧壁面上平均和脉动风压,最大降幅分别约为20%和17%;对总荷载而言,水平肋板对平均阻力无明显影响,但能明显降低建筑上的脉动升力,最大降幅为27%;肋板的布置形式对气动特性的影响有明显差异,连续水平板通过改变近壁流、涡结构来影响风压分布和风荷载,而间隔水平板对风荷载的影响相对较弱.
为探究地震下大型高墩渡槽止水的性能表现,基于流固耦合方法建立渡槽结构有限元模型,模拟动力效应下渡槽-水体的非线性耦合行为,通过引入止水变形失效阈值,重现槽跨间止水的失效过程,模拟止水失效后槽内水体的外溢;依托某实际高墩渡槽结构,通过非线性动力分析得到渡槽的宏细观地震响应,包括槽墩应变、支座位移、止水损伤等,揭示不同支座类型、减隔震装置对渡槽抗震性能的影响. 研究结果表明:在罕遇地震下,槽墩、槽身不会发生显著材料损伤,地震下渡槽结构安全具有保障;但设计地震下,渡槽止水即发生失效,无法保障渡槽震后保持正常引水功能;加入钢阻尼器可有效控制槽跨的变形,保障设计地震下渡槽止水不发生破坏,但罕遇地震下止水不可避免发生破坏,强震下的槽跨变形控制依然面临着挑战.
为研究新型X形轨枕道床承载力和横向阻力特性,开展X形轨枕与Ⅲ型轨枕道床刚度和横向阻力的缩尺模型试验,通过离散元法建立有砟轨道三维模型,并从细观上对比分析2种轨枕道床的竖向荷载传递机制及横向阻力. 研究结果表明:在最大竖向荷载时,X形轨枕道床的竖向位移(刚度)相较于Ⅲ型轨枕降低了约26.3%(提高了约46.6%);与Ⅲ型轨枕相比,X形轨枕的横向极限阻力提高了约22.4%,有效提高了轨道横向稳定性; X形轨枕与枕间道砟的接触面积和应力均明显增加,轨枕接触力沿X形4个夹角范围扩散,使得枕间道砟充分参与分担荷载;由于X形轨枕的叉形结构能够提升枕间道砟的参与,使得道床刚度和横向阻力分别提升约29.2%和31.6%,与试验结论较接近.
动车组制动盘在长期服役过程中会形成复杂的残余应力,进而使盘体在拆解后形成不可回复的翘曲变形,为探究残余应力与翘曲变形对制动盘后续维修和重复利用可行性的影响,首先,通过测试动车组轮装铸钢制动盘材料不同温度下的拉伸应力-应变数据,构建了对应的材料Ramberg-Osgood本构模型,在有限元软件中建立制动盘循环对称三维瞬态仿真模型;其次,针对列车不同制动初速度、不同平均减速度等制动工况,采用间接耦合方法分析了制动盘表层与心部残余应力的形成与平衡过程,研究了制动盘结构约束释放后的翘曲变形量变化,采用分段函数与多项式拟合了制动盘变形量与制动能量、热输入功率的函数关系;最后,通过对服役后的制动盘进行翘曲变形量测量与X射线残余应力测试,对比分析了对应仿真条件时制动盘摩擦面残余应力分布规律,发现仿真结果与实测数据具有较好的数据和趋势一致性. 研究表明:制动盘翘曲变形量与制动能量、制动减速度呈正相关关系,制动工况越严苛制动盘翘曲变形量越大;仿真与实测均表明高残余拉应力位于摩擦面中部螺栓孔附近,且制动工况越严苛高残余拉应力值越大.
为研究地铁小半径曲线轨道上e型弹条异常断裂的原因,通过长期跟踪和测量成都地铁X号线钢轨波磨的发展情况,并基于摩擦自激振动理论,建立轮对-轨道-扣件系统的全实体单元有限元模型;采用隐式动态分析方法和谐响应分析方法,研究短波长波磨、长波长波磨对e型弹条振动疲劳寿命的影响. 研究表明:这2种类型的钢轨波磨都会导致地铁e型弹条振动疲劳寿命减小;波磨幅值越大,导致弹条的振动疲劳寿命越小;钢轨波磨不仅能够引起e型弹条产生与钢轨波磨“同频”的受迫振动,还容易激发弹条产生该频率的倍频振动;对于短波长波磨而言,由于2倍频的存在,在相同波深幅值的短波长波磨影响下,25 mm 和40 mm波长的钢轨波磨最容易导致e型弹条产生振动疲劳断裂;波长为120 mm的长波长波磨的波深幅值较大时,激发出的6倍频振动导致弹条的振动疲劳寿命急剧减小;由于振动强度的减弱,波长为240 mm的长波长波磨对弹条振动疲劳寿命的影响有限.
为了研究汽车声学包设计参数对其多性能目标的影响,首先,改进了传统的深度信念网络(DBNs)方法,并提出SVR-DBNs (support vector regression- deep belief networks)模型,提升了模型映射的准确度;其次,从车辆噪声传递关系与层级目标分解角度出发,提出了一种多层级目标预测与分析方法;最后,将所提方法应用于具体车型的前围声学包性能、重量与成本多目标预测与优化分析. 研究结果表明:SVR-DBNs方法对前围声学包性能、重量与成本目标预测准确度均在0.975以上,优于传统的反向传播神经网络(BPNN)、SVR与DBNs模型;基于SVR-DBNs模型的优化结果与实测结果接近,两者加权目标相对误差为1.09%(平均传递损失(MTL)、重量和成本相对误差绝对值分别为1.44%、1.04%与0.71%),优化后的实测结果较前围声学包原始状态性能、重量和成本分别提升了5.51%、9.01%与4.40%.
随着正弦干扰频率的提高,扩张状态观测器(extended state observer,ESO)的性能会下降,为提高磁悬浮转子系统中ESO的干扰抑制能力,首先,建立单自由度磁悬浮轴承转子系统数学模型;其次,设计ESO并分析其干扰抑制效果下降的原因;在此基础上,提出一种模型辅助扩张状态观测器(model assisted extended state observer, MESO)以改进带宽配置方式,提高干扰抑制效果;然后,在频域内分析基于MESO的自抗扰控制器的稳定性;最后,通过仿真与试验验证了所提出观测器的有效性. 研究结果表明:带宽的增加会放大系统噪声的影响,使系统的控制电压增加;随着干扰频率的提高,MESO对高频正弦干扰的抑制效果会下降,但仍可以降低转子的模态振幅;对50 Hz旋转频率下的转子分别施加频率为10 Hz、振幅为2 mm的基础简谐干扰与1
基于半承压水模型综合考虑土压盾构穿越渗透性地层时覆土层及下卧层的渗透性,推导了盾构穿越层中沿掘进方向的水头分布的解析解,将其与现有的二维渗流场的解析解结合扩展为相应的三维近似解,同时采用数值仿真得到稳态渗流条件下浅埋渗透性地层的主、被动破坏模式,建立了相应的柱体+弧形转角体模型,将前述三维渗流场引入该模型,通过力矩平衡法得到了相应两种极限状态下开挖面支护压力的计算公式,与既有结果进行对比,此计算方法更接近数值解. 研究结果表明:施工对开挖面前方渗流场的扰动基本局限在三倍洞径以内,主、被动极限支护压力的值随水头差的增大均线性增加,盾构直径和水头差是影响主动极限支护压力的主要因素,拱顶埋深与盾构直径是影响被动极限支护压力的主要因素;实际施工过程中,支护压力值应尽可能接近水土分算下的土体原始地层侧压力值,并在其附近(最好在其上方)小幅度波动,波动范围应以变形控制标准为依据.
实现电气化铁路贯通供电,不仅需要解决铁路内部2个或者多个牵引变电所之间牵引网的双边供电,更重要的是解决铁路贯通供电给电网带来的影响. 本文研究对比单边供电系统与贯通供电系统对电网影响及其区别,结合电网合环规程,探讨双边供电的可实施性;构建贯通供电穿越功率计算模型,提出穿越功率监测方法以及树形供电、合建所和穿越功率利用3类穿越功率解决方案;在此基础上,综合负序治理和再生发电功率利用,提出多功能的智能牵引变电所方案,以消除对电网的不利影响,推动铁路更大范围实现贯通供电,取消电分相、消除无电区. 研究表明:在电网专用线供电情况下,若牵引变电所间距不超过80 km,双边供电时分区所的合环电压差不大于16.00%,相角差不大于12.00°,低于合环规程的规定值,符合要求,可以合环;与同相单边供电相比,贯通供电对电网产生的穿越功率问题可以得到很好解决,并且再生发电功率也能得到更好利用,技术指标优于单边供电.
在不同线路之间通过换乘站实现供电资源共享的背景下,为降低线网供电系统有功网损,以优化供电系统设计为目标,考虑多工况运行的约束条件,提出采用三重校验算法的城市轨道跨换乘站资源共享供电方案优化设计方法. 建立集中式城轨供电系统拓扑模型和跨换乘站资源共享数学模型,基于多叉树拓扑搜索得到候选方案集合,对候选方案进行三重校验优化,获得有功损耗最低的线网供电方案,并以5条线路的实际供电系统为分析实例. 研究结果表明:相比于传统的主变电所资源共享供电方案,本文提出的跨换乘站资源共享供电方案可减少整体供电系统的初期建设成本,降低
在“双碳”背景下,为推动铁路行业的低碳转型,提出一种以牵引供电系统成本最小为优化目标的混合储能容量配置方法. 首先,考虑多源互补、新能源高效消纳等因素,构建含新能源发电系统、电-氢混合储能系统、牵引供电系统的综合能源系统框架,并给出碳交易市场的交易方案;其次,构建规划-运行模型,其中,规划层确定电-氢混合储能配置方案,运行层引入阶梯式碳交易机制,以计算牵引供电系统的日运行成本;最后,利用改进海鸥优化算法对模型进行求解,结合牵引供电系统与新能源实测数据,验证所提模型的有效性. 结果表明:与仅考虑阶梯式碳交易方案和仅考虑电-氢混合储能方案相比,系统总成本分别降低48%与36%,弃风弃光率则下降11%与3%;与仅考虑阶梯式碳交易搭配单一储能介质(蓄电池或氢储能)方案相比,系统总成本分别降低19%与40%,新能源消纳率则提升4%与6%.
为揭示杆件初弯曲对弦支穹顶结构稳定承载力的影响规律,以多段直梁法模拟杆件初弯曲,采用随机缺陷模态法引入不同形状及幅值的杆件初弯曲,对弦支穹顶结构进行非线性屈曲分析;引入整体缺陷与杆件初弯曲,考察2种缺陷的共同施加对结构稳定性能的影响. 结果表明:仅考虑杆件初弯曲时,弦支穹顶结构的稳定承载力系数平均值显著降低(最大降幅为33.84%),该结构对杆件初弯曲较为敏感;相比于正弦全波,以正弦半波为初弯曲形状来引入杆件初弯曲,对结构的稳定性更为不利;相比于理想结构,同时考虑整体缺陷与杆件初弯曲时,结构的稳定承载力系数进一步降低(最大降幅为44.80%),但其降幅小于两者分别引入的降幅之和,2种缺陷的同时施加,对结构的稳定承载力存在耦合影响,一定程度上削弱了两者单独引入时的不利影响.
为保持藏羌民居片石墙原有风貌的基础上提高其抗震性能,提出采用钢筋骨架系统约束藏羌民居片石墙的构造方法. 首先,选中理县一典型石木结构的墙体为原型,并设计1/2缩尺的普通片石墙体W-1和加入钢筋骨架系统的墙体W-2;其次,对两面墙体进行对比拟静力试验,研究两者的破坏形态、滞回性能、耗能能力和变形能力;最后,通过ABAQUS有限元数值模拟得到两面墙体的骨架曲线和滞回曲线,并与试验结果进行对比分析. 结果表明:墙体在低周往复荷载作用下的破坏过程具有明显的受力阶段、裂缝萌生及扩展阶段和破坏阶段;相比于普通片石墙体,加入钢筋骨架系统的片石墙体的极限承载力、耗能性能和破坏位移分别提升了225%、183%、67%,开裂和损伤程度明显减小;数值模拟与试验得到的骨架曲线趋势相近且形状均为S形,滞回曲线形状不同,但W-2墙体滞回环面积均大于W-1墙体;数值模拟得到W-1墙体、W-2墙体的极限荷载分别为21.62 kN和78.04 kN,与试验测得极限荷载的相对误差均低于20%.
纵连板式无砟轨道在路桥过渡段区域力学行为复杂,且上拱病害频繁,以路桥过渡段 П 型端刺无砟轨道为研究对象,建立轨道-桥梁-端刺-路基一体化有限元模型;并引入双线性内聚力模型模拟板间及层间黏结关系,分析路桥过渡段纵连轨道板在不同温度荷载和端刺位移下的纵向力分布规律;并研究端刺应力敏感区域,即过渡段与支承层结合部的轨道板纵向应力特征以及结合部挤压变形与上拱变形的关系. 研究结果表明:在主端刺及过渡板与支承层结合部的轨道板纵向压应力水平最高,极端正温梯下的最大值为19.91 MPa,摩擦板及桥梁段较小,与端刺各结构组成的限位能力相对应;随着路基材料劣化脱空等病害发展,其纵向抵抗和层间摩阻不断降低,导致端刺纵向变形不断增加,端刺区轨道板的纵向应力降低,结合部支承层的纵向应力增加,当纵向变形达到6 mm时,结合部支承层的纵向压应力达到18.55 MPa,结构的压碎风险极高;结合部位的挤压上拱显著影响轨道结构板间和层间黏结状态,增加上拱病害的风险;研究成果可进一步优化和整治纵连板式无砟轨道过渡段病害,保障高铁安全平稳运行提供参考.
岩石强度是衡量岩石稳定性和安全性的关键参数,而高效准确地预测岩石强度可以有效指导隧道的开挖和支护工作. 本文收集分析源于不同设备的数字钻进参数和岩石力学性质相关数据,基于钻进过程中的能量传递分析建立数字钻进参数与单轴抗压强度的定量关系;采用机器学习方法建立基于钻进参数的岩石强度预测模型,选择BP (back-propagation)神经网络、随机森林、卷积神经网络和长短期记忆网络4种算法比较不同算法的预测效果,最终确定最优模型. 结果显示:相对于理论公式和其他3种机器学习算法,BP神经网络算法在岩石强度预测中表现优秀,其预测结果的均方根误差为5.794,平均绝对误差为4.129,相关系数为
为实现非线性动力系统的非线性气动力辨识和非线性颤振计算,提出一种基于神经网络方法和运动方程数值求解方法的自编码器模型. 以5∶1矩形断面为研究对象,通过节段模型自由振动风洞试验,详细测试系统非线性阻尼的振幅依存性和非线性颤振稳态振幅响应,明确该断面在不同折算风速下稳态振幅的唯一性;基于试验数据对所提出的自编码器模型进行训练,获取精准描述与位移和速度相关的非线性气动力编码器模型,实现不同动力参数下5∶1矩形断面非线性颤振运动时程分析. 研究结果表明:所提出的自编码器模型能够仅依赖自由振动风洞试验而无需测力或测压试验,即可精确辨识包含奇数次高次谐波分量的非线性气动力时程;能够精确复现不同初始条件下断面非线性颤振运动时程和不同折算风速下的稳态振幅响应,扭转稳态振幅最大误差不超过5%,平均误差为1.15%;具有较高的拓展性,可为后续相关研究提供参考.
为研究寒区遭受冻融作用的石膏质岩石的细观和微观孔隙结构损伤特性,以硬石膏岩为研究对象,基于核磁共振试验,获得硬石膏岩在冻融循环作用下的孔隙度、孔径和孔喉分布特征;结合分形理论,推导岩石孔径和孔喉分形维数的计算式,探讨冻融循环作用对硬石膏岩孔隙结构分形维数的影响规律;建立不同孔隙结构及孔隙分形维数与孔隙度之间的关系,并指出对孔隙度影响程度较大的孔隙结构类型. 结果表明:冻融循环作用下,硬石膏岩的孔径呈“三峰”型分布,随着冻融次数增加,硬石膏岩微孔(孔径
为探究非对称渗流边界条件下小净距隧道渗流-应力场特征及衬砌结构的安全性,以深圳莲塘隧道为工程背景,开展小净距隧道渗流模型实验,并结合模型试验与相似模拟的方法,分析单侧水源条件下小净距隧道围岩渗流水压力分布规律,并揭示不同补水距离条件下渗流场的演化规律和衬砌的安全性. 结果表明:在单侧水源条件下,小净距隧道围岩渗流场呈现出显著的非对称分布,从补水边界到另一侧水位面呈非线性降低,在隧道附近的围岩中水压力在水平方向呈非对称的“W”形分布;围岩渗流场的非对称分布导致了左右洞水压力、排水量和安全系数的非对称;与远离水源的隧道相比,靠近水源的隧道平均水压力和排水量分别增大10.4%和5.5%,安全系数减小3.0%,并且水压力的非对称性更显著;从施工期到运营期,围岩和衬砌水压力分布的非对称性有小幅度增大;随着补水距离的增大,衬砌水压力线性减小,安全系数增大,水压力非对称系数增大;研究结果可为富水地区非对称渗流边界隧道的施工和运营提供一定的参考.
为研究剪跨比和混凝土强度对高强方钢管混凝土试件抗剪性能的影响,共设计16个高强方钢管混凝土试件. 通过试验获得试件的破坏模式和剪力-位移曲线,对比剪跨比、核心混凝土强度等参数对破坏模式、剪力-位移曲线、剪力-剪应变曲线、抗剪强度和刚度的影响. 研究结果表明:与普通钢管混凝土试件一致,剪跨比是控制高强方钢管混凝土试件破坏模式的主要参数,当剪跨比为0.2或0.5时,发生剪切破坏;当剪跨比为0.8或1.0时,发生弯剪破坏;采用超高性能混凝土填充高强方钢管(剪跨比为1.0),试件的变形能力降低61.4%,抗剪强度和刚度分别提高了38.9%和85.7%,且有效延缓钢管局部屈曲和降低试件的破坏程度;核心混凝土主斜裂缝产生的倾角随剪跨比增大而减小,但不受混凝土强度影响. 本文抗剪强度试验值/抗剪强度计算值(
为解决传统土体质量含水率和干密度检测方法存在人工劳动强度高、检测时间长等问题,提出一种基于频域反射法(frequency domain reflectometry, FDR)与静力贯入的土体质量含水率和干密度快速检测方法. 通过开展参数标定试验,构建介电常数、电导率和贯入阻力相对于质量含水率和干密度的二阶响应曲面模型,并提出电导率修正模型;在此基础上,开展初步验证试验和室内模型试验,并结合粒子群优化算法进行反演计算,对该方法的适用性及优势进行系统验证. 结果表明:所采用的二阶响应曲面模型能够较好地拟合土体介电常数、电导率、贯入阻力与土体质量含水率和干密度之间的关系,相关系数均在0.950以上;在FDR法基础上增加贯入阻力测试,有效避免了仅测试介电常数和电导率引起的反演结果不唯一和异常值问题,土体质量含水率和干密度的均方根误差分别由3.838和0.143降低至0.853和0.069;相较传统FDR法,该方法的检测精度显著提升,土体质量含水率和干密度的最大误差分别在 [−1.5%,1.5%]和 [−0.1,0.1] g/cm3以内.
为研究高原地区铺设无缝道岔的可行性与高原气候环境对跨区间无缝线路稳定性的影响,探讨了不同气候、不同海拔和不同结构型式道岔实现无缝化时,铺设锁定轨温差对无缝道岔力学特性的影响. 首先,基于高原铁路自然地理环境与线路运营条件,选取青藏线升级改造过程中实现无缝化的典型道岔作为研究对象;其次,结合不同结构型式下的道岔关键传力部件力学特性开展室内参数测试,掌握高原气候低温环境对扣件、道床等阻力的影响;最后,构建考虑多场耦合和塑性阻力的无缝道岔计算模型,揭示铺设轨温差与无缝道岔受力变形的关系. 研究结果表明:当线路所处温差越大,铺设锁定轨温差引起的基本轨温度附加力增加速率从4.5 kN/℃ (达琼果站)增加到6.0 kN/℃ (唐古拉北站);无缝道岔与相邻线路或相邻道岔间的铺设锁定轨温差对无缝道岔受力与变形影响较大,而线路轨节/道岔轨节铺设锁定轨温差引起的横向位移增加速率从0.010 mm/℃(达琼果站)增加到0.011 mm/℃ (唐古拉北站),左右轨与直侧轨铺设轨温差对道岔失稳影响较小;考虑到高原道岔涉及多股钢轨锁定,易造成锁定轨温差相差较大,为提高安全冗余,铺设锁定轨温差应控制在[−3,3] ℃,相邻轨节锁定轨温差不超过5 ℃.
为研究典型应力-剪胀关系对常见岩土材料力学响应的预测效果,构建适合岩石材料的应力-剪胀关系,提升本构模型的准确性,本文结合试验数据对典型应力-剪胀关系展开对比分析,并构建适用于岩石的应力剪胀关系模型. 首先,基于热动力学框架和能量守恒方程,梳理出3种典型的应力-剪胀关系模型,并将多种岩土材料的应力-剪胀数据与典型应力-剪胀关系进行对比;随后,以Rowe剪胀关系模型为基本框架,考虑多种因素影响,提出适用于岩石的改进Rowe应力-剪胀关系模型,分析了其对试验数据的拟合效果,并对比所提模型和变剪胀角模型对加载过程剪胀角演化的模拟效果;最后,将修正Rowe剪胀关系与修正剑桥模型耦合,与经典的修正剑桥模型的模拟结果和试验数据进行对比校验. 研究结果表明:由于黏聚力的影响,基于纯摩擦假设推导的经典应力-剪胀关系无法准确描述含黏聚力岩土材料的应力-剪胀响应;修正Rowe剪胀关系模型可以有效反映岩石的应力-剪胀响应,并能模拟数据中的“回旋勾”现象;本文提出的应力-剪胀关系模型不仅形式简洁,且参数数量较变剪胀角模型少;应用所提修正Rowe剪胀关系模型可以提升本构模型在变形预测方面的准确性.
为研究共轨喷油器各喷孔喷油规律,根据动量法研发了多孔喷油器喷油规律测量装置;在不同的负荷工况下,使用研发的装置测量喷油器各喷孔的喷油量差异性,并与商业单次喷射仪EMI 2的测量结果进行对比;在不同的喷油压力下,针对单一喷孔进行喷孔喷油稳定性研究. 研究结果表明:在低喷油压力下,喷油量波动率随着喷油脉宽的增加而降低,整体上喷油量波动率为10%~20%,此时针阀无法完全打开,针阀-针阀座之间燃油的不稳定流动会造成较大的喷油量波动;在高喷油压力下,针阀更容易达到最大升程,喷孔参数间的不一致性是导致喷孔喷油量波动的关键因素,在0.5~2.0 ms的喷油脉宽范围内,喷油量波动率处于5%之内,远小于相同条件低喷油压力下的喷孔喷油量波动率,针阀无法达到最大升程是导致共轨喷油器喷油不稳定性的主要原因.
为提高车辆对碰事故再现的精度与有效性,基于动量与动量矩守恒定理,建立车辆碰撞速度计算方程组,并通过碰撞坐标系旋转变换,构建车辆碰撞瞬间的解析模型;其次,将碰撞事故过程分阶段进行分析,构建车辆三维车身动力学模型;最后,基于3D MAX和OpenGL图形技术以及基础数据库技术,设计碰撞事故重建系统,并通过真实对向碰撞(对碰)事故案例进行仿真分析,以验证系统的精度和有效性. 研究结果表明:该系统模拟车速的平均相对误差小于5.1%,车辆运动轨迹吻合程度的平均相关性为0.85,有效解决了模拟车辆碰撞瞬间逆向不确定性方程组解析化难题.
针对高速列车动力学性能参数优化求解问题,首先,搭建高速列车动力学性能优化迭代设计框架,提取动力学属性设计参数并建立动力学性能分析模型;其次,基于设计参数重要度分析和自组织映射缩减设计空间维度,通过多学科领域耦合仿真计算生成性能参数试验样本集;最后,构建多工况下的多目标优化模型,并在此基础上建立基于贝叶斯优化随机森林的高速列车多工况代理模型,通过改进NSGA-Ⅱ算法找出满意的设计参数集. 以某工况为例,实验结果表明:优化后的横向平稳性、垂向平稳性、轮轨垂向力、轮轴横向力、脱轨系数、轮重减载率和倾覆系数性能分别提升1.14%、3.19%、2.86%、2.30%、8.33%、2.77%、8.11%,验证了所提迭代设计方法有效可行,对复杂装备正向创新设计具有一定参考价值.
针对数值图谱法提取平面开环轨迹特征计算量大、检索效率低的问题,提出一种基于弦角描述符的平面开环轨迹尺寸综合方法. 首先,利用弦角描述符的平移、旋转、缩放不变性,得到与机构机架位置、机架偏转角度和整体缩放均无关的开环轨迹形状特征;其次,基于弦角描述符自包含属性提出不受采样分辨率影响的开环轨迹部分匹配算法;然后,通过多维尺度缩放法将弦角描述符压缩为2维特征,并结合层次聚类算法,建立16 000组平面四杆机构的数值图谱库;在此基础上,根据弦角描述符与图谱库中弦角描述符的相似程度,检索出满足设计要求的机构尺寸型;最后,通过2个平面开环轨迹尺寸综合算例,验证该方法的有效性. 研究结果表明:所提尺寸综合方法能够得到满足设计要求的平面开环轨迹尺寸综合结果,且无需对轨迹进行归一化处理;与B样条曲线描述符、曲率描述符、傅里叶描述符相比,弦角描述符的开环轨迹匹配总时间分别减少了43%、35%、38%.
为有效评估在使用过程中LS-FA-211001吸力锚的可靠性水平,考虑外部载荷的累积效应,建立循环载荷作用下的时变可靠性模型;结合LS-FA-211001吸力锚的不确定性量化数据,对其展开时变可靠性分析;利用蒙特卡罗模拟(MCS)方法对吸力锚可靠度进行验证. 结果表明:在可靠度要求95%以上的条件下,LS-FA-211001吸力锚的寿命即使在恶劣勘探点也能达到100次;同时,在循环载荷不同作用次数下,本文建立的吸力锚时变可靠性模型与MCS方法评估出的可靠度结果相比,误差不超过2.15%,验证了本文方法的有效性.
为解决竖井全断面掘进机类“W”型刀盘滚刀布局困难的问题,基于离散元法研究滚刀安装排布参数对滚刀破岩效果的影响规律,通过粒子群优化算法得到滚刀整体布局优化方案. 首先,分别建立掌子面凹陷区域处和锥面处滚刀组协同破岩的二维离散元模型;然后,研究不同布刀间距的凹陷区域处滚刀组协同破岩效果,揭示锥面处滚刀刀间距及安装倾角对岩石破碎情况、滚刀载荷和破岩效率的影响规律,以破岩比能为指标得到合理的锥面处滚刀刀间距和安装倾角;最后,分析确定星型布局方式是适合异型刀盘上滚刀的布局方式,并利用粒子群算法优化滚刀布局方案. 研究结果表明:千枚岩地层中凹陷区域处应该缩小滚刀组的布刀间距;锥面处异型刀盘的滚刀采用垂直锥面安装方式时,岩石破碎效率更高;滚刀布局优化后的异型刀盘径向载荷减小24.07%,刀盘合力矩减少40.83%. 研究成果可为竖井工程中异型刀盘的滚刀布局提供参考.
为研究地铁小半径曲线段梯形轨枕轨道上内轨波磨的形成机理,基于饱和轮轨蠕滑力引发的摩擦自激振动导致钢轨波磨的理论,建立导向轮对-梯形轨枕轨道系统有限元模型,模型中采用实体单元对扣件系统进行建模;应用复特征值分析和瞬时动态分析分别求解轮轨系统的运动稳定性和时域动态响应;研究了缓冲减振垫参数和梯形轨枕结构对轮轨系统摩擦自激振动的影响. 研究结果表明:饱和轮轨蠕滑力引发的频率为150 Hz的摩擦自激振动是小半径曲线段梯形轨枕轨道上内轨波磨的成因,预测得到的波磨波长约为69 mm,与实测结果很接近;参数敏感性分析表明,增大侧向缓冲垫阻尼及铺设横向钢管间距为1.25 m的梯形轨枕可以在一定程度上抑制梯形轨枕轨道上的钢轨波磨.
为在繁忙终端区实施连续下降运行(CDO)并估算其二氧化碳减排成效,提出一种基于数据驱动和最优控制理论相结合的连续下降运行4D轨迹预测方法. 首先,通过近邻传播轨迹聚类方法对典型进场水平路径进行识别;然后,以典型进场水平路径为依据,分别以最小时间和最小燃油为目标,建立垂直剖面连续下降运行多阶段最优控制模型,并提出一种基于遗传算法的最优控制模型求解新方法(GACDO);最后,利用终端区实际轨迹数据,开展典型进场水平路径识别和连续下降运行模式下的4D轨迹预测与减排收益比较实验. 结果表明:该方法能获得理想的连续下降运行4D轨迹;以最小时间为优化目标时,平均运行时间和二氧化碳排放分别减少26%和8%;以最小油耗为优化目标时,运行时间和二氧化碳排放分别减少17%和20%.
在城市轨道交通网络化运营条件下,实现乘务资源共享对优化资源配置、降低运营成本、提高网络运输效率具有重要意义. 首先,针对城市轨道交通系统既有固定班制轮班模式,将多线乘务资源共享引入乘务轮班计划编制,在传统单一线路轮班基础上考虑乘务员的跨线值乘和出退勤偏好需求,建立面向线网乘务轮班优化模型以实现区域线网乘务计划的协同优化;其次,根据乘务员对出退勤地点的偏好进行分组,在各组内进行独立的轮班优化,均衡所有乘务员轮班计划工作量;然后,基于班次工作时间、班次间衔接时间和早晚时段工作时间,提出定量化的“辛苦”指标衡量不同班次的工作负荷;最后,根据固定班制和乘务资源共享的特点设计改进的蜂群算法,通过改进初始解生成和迭代搜索机制以完成模型的高效求解。研究表明:引入乘务资源共享可促进乘务员工作量的均衡性,同时满足乘务员对出退勤地点的偏好需求,在既有城市轨道交通乘务轮班模式下提高乘务计划效率和乘务员满意度.
在既有列车运行图中插入新增列车运行线是铁路运输企业编制每季度列车运行图和日计划中列车运行计划所常采用的方法. 然而,传统基于人工的编制手段效率低且难以保证列车运行图编制质量. 对此,本文以降低铁路运营和调度成本以及运输尽可能多的旅客等为优化目标,基于离散时空网络构建综合优化列车开行方案和新增列车运行线的整数线性规划模型;针对模型特点,设计基于拉格朗日松弛的启发式求解算法,将原问题分解为列车开行方案优化子问题和一组为单列列车搜索费用最小的时空路径子问题;最后,以京沪高速铁路为算例,验证模型的正确性和算法可行性. 研究结果表明:所提方法能快速自动生成新增列车运行线后的列车运行图,且求得的上界解质量相比顺序求解方法平均提升了4.58%.
第5代移动通信技术(5G)具有连接速率高与系统容量大等优势,是编组站通信系统向未来演进的重要支撑. 为解决所涉及天线参数规划技术面临计算量大、效率和准确性难以兼顾的难题,基于CloudRT射线跟踪平台仿真场景信号覆盖情况,综合考虑通信基站天线角度选取及功率优化问题,提出一种基于机器学习算法的规划方法. 首先,基于重叠复杂度和聚类算法对天线角度参数聚类,并对聚类结果进行评估;其次,根据天线增益与角度的关系设计优化算法,简化天线角度参数组合的筛选过程;最后,在遗传算法中引入模拟退火算子求解最优功率组合,以江村编组站为场景进行验证. 研究结果表明:本文方法所得总功率比遍历算法高5.6 dB,所用时间为遍历算法的13.5%,同时实现了准确性和高效性,有望应用到未来高铁和编组站的5G系统中.
为结合施工场景动态性强、遮挡严重、人员衣着相似等特点,实现对施工现场人员持续的位置信息感知,提出一种基于计算机视觉的施工现场人员信息智能感知算法. 首先,利用基于深度学习的目标检测算法实现人员的初步感知;其次,以行人重识别的视角提出一种数据关联方法,通过深度特征匹配实现目标ID分配,采用基于重排序的距离度量优化相似度度量结果,再利用缓冲机制和特征动态更新机制对匹配结果进行后处理,减少施工场景难点带来的错误匹配;然后,利用图像透视变换获取与ID对应的2D坐标信息及运动信息,为生产力分析提供基础数据;最后,利用所采集的包含不同施工阶段的图像构建标准测试视频,并对方法进行测试. 研究表明:在不同场景下,算法平均IDF1(ID的F1得分)和多目标追踪准确度(multiple object tracking accuracy,MOTA)分别为85.4%和75.4%,所提出的重排序方法、匹配后处理机制有效提升追踪精度,相比去除这些优化机制后的算法,IDF1和MOTA平均分别提升了52.8%和3.8%.
在机载锂电池失效识别等样本不平衡的应用场景中,支持向量机(support vector machine,SVM)算法存在分离超平面偏移的问题,为此,提出分段惩罚参数支持向量机(segmented penalty parameters support vector machine,SPP-SVM)算法. 该算法在训练过程中对样本进行分段,并根据各段内样本的识别误差自动调整惩罚参数,从而抑制超平面偏移;基于容量增量分析和灰色关联分析等方法提取并筛选特征,进而基于SPP-SVM算法建立锂电池失效识别模型;以NASA锂电池数据集和加州大学欧文分校(University of California Irvine,UCI)数据集为对象,开展对比实验. 研究结果表明:与结合寻优算法的SVM相比,SPP-SVM算法识别性能更好,在不平衡程度较大的锂电池数据上,查准率和查全率的调和平均数(
变压器绝缘水平和健康状态对电网的安全稳定至关重要,为研究750 kV变压器内部存在放电故障时,箱体外采集的可听声信号中可能混杂有电晕声、鸟鸣等其他干扰信号的工程实际问题,提出一种基于稀疏表示理论(SBSS)与卷积神经网络(CNN)的750 kV变压器与尖板放电混叠信号的声纹识别方法. 首先,采集武胜750 kV变电站变压器正常运行声信号作为背景声,构建针-板放电模型得到放电声信号和现场常见干扰声作为前景声,通过添加不同信噪比的前景声到背景声中构造混叠声信号;然后,利用基于稀疏表示理论的盲分离算法实现目标前景声纹图谱和冗余背景声纹图谱的分离;最后,对CNN模型超参数进行优化,以提高模型对分离后的各类前景声纹谱图的分类性能. 研究结果表明:通过盲源分离算法可以剔除冗余背景声干扰,使神经网络聚焦于前景声的分类识别;本文方法可实现混叠声信号中前景声纹的分离,分离后,CNN、支持向量机(SVM)和反向传播神经网络(BPNN)的识别准确率分别提高7.6%、17.2%和14.3%.