Collaborative Optimization of Vehicle Timetable and Operation Path for Long Tunnel Construction
-
摘要:
针对隧道内部运输组织管理停留在宏观组织策略层面,缺乏对施工车辆时刻表和运行路径做出精细化决策的问题,针对长大隧道内部交通网络,绘制隧道内部交通网络拓扑图,构建考虑交通冲突的长大隧道内部多工种施工车辆时刻表和运行路径优化模型,在疏解隧道内部车流间交通冲突的前提下最小化施工车辆的总运行(行驶)时间,以提高生产效率;在此基础上,将优化模型进行线性化处理,重构为整数线形规划模型,通过GUROBI求解器进行求解. 研究结果表明:隧道运输组织方案在优化前后,车辆的总运行(行驶)时间保持512 min不变,而交叉冲突从19个减至0个,相向冲突从2个减至0个,即优化方案在不增加施工车辆总运行时间的前提下,完全避免了交通冲突,保证施工车辆的运输安全,具备可实操性.
Abstract:At present, the transportation organization and management within the tunnel still remain at the macro level, lacking refined decision-making on construction vehicle timetables and operation paths. To address the above issues, this article draws the internal traffic network topology map of the long tunnels, and proposes a collaborative optimization model for the timetable and operation path of multiple types of construction vehicles in long tunnels, which minimizes the total operating time of construction vehicles while alleviating traffic conflicts within the tunnel, improves production efficiency, and ensures system safety. And the optimization model is reconstructed into an integer linear programming model to be solved using GUROBI. The case results show that before and after the optimization of the construction transportation organization scheme, the total operating time of vehicles remains unchanged at 512 minutes, while the number of cross conflicts is reduced from 19 to 0, and the number of opposite conflicts is reduced from 2 to 0. This means that the optimization scheme completely avoids traffic conflicts without increasing the total running time of construction vehicles.
-
表 1 施工运输组织初始方案
Table 1. Initial construction organization scheme
编号 车辆进入隧道运行方案 车辆离开隧道运行方案 始发时刻 运行路径 始发时刻 运行路径 KP1 0 0-1-2-5-8-11-14 13 14-11-8-5-4-1-0 KP2 1 0-1-4-5-8-11-14 14 14-11-8-5-2-1-0 KP3 2 0-1-4-5-8-11-14 15 14-11-8-5-2-1-0 KP4 3 0-1-4-5-8-11-14 16 14-11-8-5-2-1-0 KC1 4 0-1-2-3-6-9 15 9-6-3-2-1-0 KC2 5 0-1-2-3-6-9 16 9-6-3-2-1-0 KC3 6 0-1-2-3-6-9 17 9-6-3-2-1-0 KC4 7 0-1-2-3-6-9 18 9-6-3-2-1-0 KM1 8 0-1-4-7-10-13 23 13-10-7-4-1-0 KM2 9 0-1-4-7-10-13-14-16 27 16-14-13-10-7-4-1-0 KM3 10 0-1-4-5-8-11-14-15 27 15-14-11-8-5-2 1-0 KM4 11 0-1-4-7-10-13 26 13-10-7-4-1-0 KM5 12 0-1-4-7-10-13-14-16 30 16-14-13-10-7-4-1-0 KM6 13 0-1-4-5-8-11-14-15 30 15-14-11-8-5-2-1-0 KM7 14 0-1-4-7-10-13 29 10-7-4-1-0 KM8 15 0-1-4-7-10-13-14-16 33 16-14-13-10-7-4-1-0 KM9 16 0-1-4-5-8-11-14-15 33 15-14-11-8-5-2-1-0 KM10 17 0-1-4-7-10-13 32 13-10-7-4-1-0 KM11 18 0-1-4-7-10-13-14-16 36 16-14-13-10-7-4-1-0 KM12 19 0-1-4-5-8-11-14-15 36 15-14-11-8-5-2-1-0 表 2 施工运输组织优化方案
Table 2. Optimization construction organization scheme
编号 车辆进入隧道运行方案 车辆离开隧道运行方案 始发时刻 运行路径 始发时刻 运行路径 KP1 0 0-1-2-5-8-11-14 13 14-11-8-5-4-1-0 KP2 1 0-1-4-7-8-11-14 14 14-13-10-7-4-1-0 KP3 5 0-1-4-7-8-11-14 18 14-13-10-7-4-1-0 KP4 9 0-1-4-7-8-11-14 22 14-11-8-5-4-1-0 KC1 13 0-1-4-5-6-9 24 9-6-5-4-1-0 KC2 17 0-1-2-5-6-9 28 9-6-5-2-1-0 KC3 18 0-1-4-5-6-9 29 9-6-3-2-1-0 KC4 22 0-1-2-3-6-9 33 9-6-5-4-1-0 KM1 23 0-1-4-7-10-13 38 13-10-7-4-1-0 KM2 27 0-1-4-7-10-13-14-16 45 16-14-11-8-5-2-1-0 KM3 31 0-1-4-7-8-11-14-15 48 15-14-13-10-7-4-1-0 KM4 34 0-1-4-7-10-13 49 13-10-7-4-1-0 KM5 35 0-1-4-7-8-11-14-16 53 16-14-11-8-5-2-1-0 KM6 39 0-1-2-5-8-11-14-15 56 15-12-11-8-5-2-1-0 KM7 42 0-1-4-7-10-13 57 13-10-7-4-1-0 KM8 46 0-1-4-7-8-11-14-16 64 16-14-11-8-5-2-1-0 KM9 47 0-1-2-5-8-11-14-15 64 15-14-11-8-5-4-1-0 KM10 49 0-1-4-7-10-13 64 13-10-7-4-1-0 KM11 53 0-1-4-7-10-13-14-16 71 16-14-11-8-7-4-1-0 KM12 57 0-1-2-5-8-11-12-15 74 15-14-11-8-5-4-1-0 表 3 初始和优化方案的目标函数值和交通冲突数量
Table 3. Objective function values and number of traffic conflicts for initial and optimization schemes
方案 目标函数值/min 交通冲突数量/个 交叉 相向 赶超 初始方案 512 19 2 0 优化方案 512 0 0 0 -
[1] 秦峰,王少飞,肖博,等. 截至2021年底中国10km以上特长公路隧道统计[J]. 隧道建设(中英文),2022,42(6): 1111-1116QIN Feng, WANG Shaofei, XIAO Bo, et al. Statistics of super-long highway tunnels over 10 km in China as of the end of 2021[J]. Tunnel Construction, 2022, 42(6): 1111-1116. [2] 巩江峰,唐国荣,王伟,等. 截至2021年底中国铁路隧道情况统计及高黎贡山隧道设计施工概况[J]. 隧道建设(中英文),2022,42(3): 508-517GONG Jiangfeng, TANG Guorong, WANG Wei, et al. Statistics of China’s railway tunnels by the end of 2021 and design & construction overview of Gaoligongshan tunnel[J]. Tunnel Construction, 2022, 42(3): 508-517. [3] 麦继婷,陈春光. 秦岭特长隧道内温度预测[J]. 西南交通大学学报,1998(2): 41-45. [4] 杜志刚,卓诗琪,傅金乾,等. 城市长大隧道交通安全应急设计优化研究框架[J]. 武汉理工大学学报(交通科学与工程版),2023,47(1): 37-41DU Zhigang, ZHUO Shiqi, FU Jinqian, et al. Research framework for optimization of traffic safety emergency design of urban long tunnel[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2023, 47(1): 37-41. [5] SOUSA R L, EINSTEIN H H. Lessons from accidents during tunnel construction[J]. Tunnelling and Underground Space Technology, 2021, 113: 103916.1-103916.28. [6] ZHU Y M, ZHOU J J, ZHANG B, et al. Statistical analysis of major tunnel construction accidents in China from 2010 to 2020[J]. Tunnelling and Underground Space Technology, 2022, 124: 104460.1-104460.14. [7] JIANG X H, LI K, CUI X Y. Study on traffic organization around pivotal tunnel entrance/exit[J]. IOP Conference Series: Materials Science and Engineering, 2020, 741(1): 012048.1-012048.6. [8] LIU M K, XU Z P. Research on urban path selection of construction vehicles based on bi-objective optimization[J]. PLoS One, 2022, 17(10): 0275678.1-0275678.16. [9] 林杉,许宏科,刘占文. 一种高速公路隧道交通流元胞自动机模型[J]. 长安大学学报(自然科学版),2012,32(6): 73-77LIN Shan, XU Hongke, LIU Zhanwen. One cellular automaton traffic flow model for expressway tunnel[J]. Journal of Chang’an University (Natural Science Edition), 2012, 32(6): 73-77. [10] 高壮. 重载铁路无砟轨道施工技术及物流组织研究[J]. 价值工程,2019,38(2): 105-107GAO Zhuang. Research on construction technology and logistics organization of ballastless track for long and heavy haul railway[J]. Value Engineering, 2019, 38(2): 105-107. [11] ZHANG Y X, PENG Q Y, YAO Y, et al. Solving cyclic train timetabling problem through model reformulation: extended time-space network construct and alternating direction method of multipliers methods[J]. Transportation Research Part B: Methodological, 2019, 128: 344-379. doi: 10.1016/j.trb.2019.08.001 [12] 王志建,刘士杰,周锦瑶,等. 考虑个性化出行需求的多模式公交路径规划[J]. 西南交通大学学报,2022,57(6): 1319-1325,1333. WANG Zhijian,LIU Shijie,ZHOU Jinyao,et al. Multimodal public transportation route planning considering personalized travel demand[J]. Journal of Southwest Jiaotong University,2022,57(6): 1319-1325,13333. [13] CHERIF G, TROUILLET B, TOGUYENI A K A. Modeling and routing problems of automated port using T-TPN and Beam search[C]//2022 8th International Conference on Control, Decision and Information Technologies (CoDIT). Turkey. IEEE, 2022: 1201–1206. [14] 徐翔斌,李紫阳. 基于离散时空网络的多自动引导车路径规划问题[J]. 科学技术与工程,2021,21(33): 14209-14219 doi: 10.3969/j.issn.1671-1815.2021.33.025XU Xiangbin, LI Ziyang. Path planning problem of multiple automatic guided vehicle based on discrete space-time network[J]. Science Technology and Engineering, 2021, 21(33): 14209-14219. doi: 10.3969/j.issn.1671-1815.2021.33.025 [15] ZHANG Z, GUO Q, YUAN P J. Conflict-free route planning of automated guided vehicles based on conflict classification[C]//2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff IEEE, 2017: 1459–1464. [16] 李珣,程硕,吴丹丹,等. 车路协同下基于元胞自动机的精细交通流模型[J]. 西南交通大学学报,2023,60(1): 225-232. [17] 李英帅,马泽超,王雯婧,等. 考虑非机动车影响的直线式单泊位公交停靠站设置优化[J]. 交通信息与安全,2021,39(5): 137-143. [18] 中铁一局集团有限公司. 铁路隧道工程施工技术指南:TZ 204—2008[S]. 北京:中国铁道出版社,2009. [19] 鲜国. 成兰铁路跃龙门隧道动态施工组织管理研究[J]. 隧道建设(中英文),2020,40(3): 452-463XIAN GUO. Dynamic construction organization management of yuelongmen tunnel of chengdu-lanzhou railway[J]. Tunnel Construction, 2020, 40(3): 452-463. -