• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

中低速磁浮列车悬浮系统模糊综合评价与改进设计

曹毅 张敏 刘静 刘清辉 马卫华 单磊 李铁

曹毅, 张敏, 刘静, 刘清辉, 马卫华, 单磊, 李铁. 中低速磁浮列车悬浮系统模糊综合评价与改进设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240190
引用本文: 曹毅, 张敏, 刘静, 刘清辉, 马卫华, 单磊, 李铁. 中低速磁浮列车悬浮系统模糊综合评价与改进设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240190
CAO Yi, ZHANG Min, LIU Jing, LIU Qinghui, MA Weihua, SHAN Lei, LI Tie. Fuzzy Comprehensive Evaluation and Improved Design of Levitation System for Medium- and Low-Speed Maglev Trains[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240190
Citation: CAO Yi, ZHANG Min, LIU Jing, LIU Qinghui, MA Weihua, SHAN Lei, LI Tie. Fuzzy Comprehensive Evaluation and Improved Design of Levitation System for Medium- and Low-Speed Maglev Trains[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240190

中低速磁浮列车悬浮系统模糊综合评价与改进设计

doi: 10.3969/j.issn.0258-2724.20240190
基金项目: 国家自然科学基金项目(52102442,52402480);国家资助博士后研究人员计划(GZC20231937)
详细信息
    作者简介:

    曹毅(1996—),男,博士研究生,研究方向为悬浮冗余和悬浮控制,E-mail:caoyi@swjtu.edu.cn

    通讯作者:

    马卫华(1979—),男,研究员,博士,研究方向为车辆系统动力学,E-mail: mwh@swjtu.edu.cn

  • 中图分类号: U237

Fuzzy Comprehensive Evaluation and Improved Design of Levitation System for Medium- and Low-Speed Maglev Trains

  • 摘要:

    为提高某型中低速磁浮列车悬浮系统的容错能力,运用故障模式、影响及危害度分析(FMECA)方法对系统进行可靠性分析评估,识别出典型失效模式;通过专家模糊综合评价量化指标,以降低主观偏差,避免危害性取值重复的问题;利用层次分析法(AHP)对不同影响因素进行权值分配,使计算得到的各故障模式的综合危害性等级更符合实际工程需求;进一步,基于马尔可夫理论,针对综合危害性等级较高的故障模式提出改进措施;最后,研制样机并在单悬浮架试验台上开展悬浮试验与故障模拟试验. 研究结果表明:控制板、接口板和电源模块的综合危害等级最高,分别为6.31475.48415.6534;故障发生后,主从机切换时间小于100 us,悬浮间隙均方根误差小于0.1 mm,加速度波动在0.6 m/s2内.

     

  • 图 1  悬浮控制系统结构

    Figure 1.  Levitation control system structure

    图 2  悬浮控制系统结构树

    Figure 2.  Structure tree of levitation control system

    图 3  悬浮冗余控制器设计架构

    Figure 3.  Architecture of levitation redundant controller

    图 4  马尔可夫状态转移

    Figure 4.  Markov state transition

    图 5  不同冗余结构可靠性曲线

    Figure 5.  Reliability curves of different redundant structures

    图 6  双机切换控制策略

    Figure 6.  Dual-machine switching control strategy

    图 7  电源电路结构

    Figure 7.  Power circuit structure

    图 8  电源模块故障模拟测试

    Figure 8.  Failure simulation test of power module

    图 9  单悬浮架试验台

    Figure 9.  Single levitation test bench

    图 10  无故障主从状态信号和PWM输出信号

    Figure 10.  Master–slave status signal and PWM output signal under fault-free condition

    图 11  1# 板卡故障状态信号和PWM信号

    Figure 11.  Status signal and PWM signal under board #1 failure

    图 12  切换过程间隙、电流和加速度变化

    Figure 12.  Changes in levitation gap, current, and acceleration during switching process

    图 13  双板卡故障状态信号和PWM信号

    Figure 13.  Status signal and PWM signal under dual-board failure

    图 14  2#板卡故障后状态信号和PWM信号

    Figure 14.  Status signal and PWM signal after board 2# failure

    图 15  电源故障时刻间隙、电流和加速度变化

    Figure 15.  Changes in levitation gap, current, and acceleration during power failure

    表  1  悬浮系统典型故障模式FMEA分析结果

    Table  1.   FMEA results of typical failure modes in levitation system

    最低约定层次 故障模式 故障原因 系统影响 整车影响
    控制板  无 PWM 输出/输出错误  源端电压不稳;过温虚焊,断路;抗振动冲击过大;内部短路;程序运行错误  驱动板无法接收到PWM,单点无法悬浮  车辆单点失悬或掉点砸轨,双点故障进入救援模式
    接口板 悬浮控制故障  过温虚焊,断路;抗振动冲击能力差;抗干扰能力差;内部短路;源端电压不稳  控制板无法接收悬浮传感器信号,无法悬浮;控制板接收错误电流信号,悬浮失稳  车辆单点失悬,双点故障进入救援模式;车辆单点连续打轨,车辆降速运营
     110 V 转 24 V 电源模块 DC 24 V断路  耐压能不足;温度过高;抗干扰能力不足  悬浮传感器及悬浮控制电路无法得电,悬浮控制缺少输入  车辆单点失悬,双点故障进入救援模式
    电流传感器  信号输出不稳定;无输出信号 过流;接触不良;温度过高  无法监测悬浮电流,实际电流与预期存在误差,悬浮失稳  车辆单点连续打轨,车辆降速运营
    电压传感器 信号输出不稳定 过压;接触不良 主接触器无法闭合 车辆单点失悬,双点故障进入救援模式
    驱动板 无法启动  IGBT击穿导致的过流;抗振动冲击能力差;抗干扰能力差;高温虚焊 无法控制IGBT开断  车辆单点失悬,双点故障进入救援模式
    IGBT 击穿 电磁铁短路;温度过高 无悬浮电流输出  车辆单点失悬,双点故障进入救援模式
    支撑电容 损坏  老化;电容质量问题;温度过高 单支撑电容损坏无影响
    击穿 过压 主电路短路,悬浮控制器停机  车辆单点失悬,双点故障进入救援模式
    下载: 导出CSV

    表  2  影响因素的评价等级划分

    Table  2.   Evaluation level classification for influencing factors

    影响因素等级
    13579
    影响概率几乎没有极少偶尔可能经常
    严重程度可忽略轻微的临界的危急的灾难的
    综合检修难度极低较低中等较难很难
    下载: 导出CSV

    表  3  因素重要度判断值表

    Table  3.   Judgment values for factor importance

    相对评价值 极重要 很重要 重要 略重要 同等
    评分 9 7 5 3 1
     注:8、6、4、2为评价价值的中间值.
    下载: 导出CSV

    表  4  1~9阶判断矩阵${I_{\mathrm{R}}}$值

    Table  4.   Judgment matrices${I_{\mathrm{R}}}$for orders 1–9

    阶数 1 2 3 4 5 6 7 8 9
    ${I_{\mathrm{R}}}$ 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45
    下载: 导出CSV

    表  5  各故障模式的综合危害等级

    Table  5.   Comprehensive hazard levels for each failure mode

    部件 综合危害性等级 部件 综合危害性等级
    控制板 6.3147 驱动板 3.8714
    接口板 5.4841 充电电阻 3.7696
    110/24 V
    电源
    5.6534 吸收电容 2.9501
    IGBT 4.5688 支撑电容 2.9932
    电流传感器 4.1590 电压传感器 3.7798
    主接触器 4.2963 熔断器 3.4600
    下载: 导出CSV
  • [1] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [2] 徐飞,罗世辉,邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报,2019,41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shihui, DENG Zigang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006
    [3] THORNTON R D. Efficient and affordable maglev opportunities in the United States[J]. Proceedings of the IEEE, 2009, 97(11): 1901-1921. doi: 10.1109/JPROC.2009.2030251
    [4] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [5] 马卫华,胡俊雄,李铁,等. EMS型中低速磁浮列车悬浮架技术研究综述[J]. 西南交通大学学报,2023,58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971

    MA Weihua, HU Junxiong, LI Tie, et al. Technologies research review of electro-magnetic suspension medium-low-speed maglev train levitation frame[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971
    [6] 马卫华,罗世辉,张敏,等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报,2021,21(1): 199-216.

    MA Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216.
    [7] 陈文彬,李晓阳,童邦安,等. 谐波减速器的传动效率确信可靠性建模与分析[J]. 振动工程学报,2022,35(1): 237-245.

    CHEN Wenbin, LI Xiaoyang, TONG Bang’an, et al. Belief reliability modeling and analysis for transmission efficiency of harmonic gear[J]. Journal of Vibration Engineering, 2022, 35(1): 237-245.
    [8] CATELANI M, CIANI L, GALAR D, et al. FMECA assessment for railway safety-critical systems investigating a new risk threshold method[J]. IEEE Access, 2021, 9: 86243-86253. doi: 10.1109/ACCESS.2021.3088948
    [9] BEN BRAHIM I, ADDOUCHE S A, EL MHAMEDI A, et al. Build a Bayesian network from FMECA in the production of automotive parts: diagnosis and prediction[J]. IFAC-PapersOnLine, 2019, 52(13): 2572-2577. doi: 10.1016/j.ifacol.2019.11.594
    [10] LIN S, JIA L M, WANG Y H. Safety assessment of complex electromechanical systems based on hesitant interval-valued intuitionistic fuzzy theory[J]. International Journal of Fuzzy Systems, 2019, 21(8): 2405-2420. doi: 10.1007/s40815-019-00729-4
    [11] CATELANI M, CIANI L, GALAR D, et al. Risk assessment of a wind turbine: a new FMECA-based tool with RPN threshold estimation[J]. IEEE Access, 2020, 8: 20181-20190. doi: 10.1109/ACCESS.2020.2968812
    [12] ASWIN K R, RENJITH V R, AKSHAY K R. FMECA using fuzzy logic and grey theory: a comparitve case study applied to ammonia storage facility[J]. International Journal of System Assurance Engineering and Management, 2022, 13(4): 2084-2103.
    [13] RENJITH V R, JOSE KALATHIL M, KUMAR P H, et al. Fuzzy FMECA (failure mode effect and criticality analysis) of LNG storage facility[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 537-547. doi: 10.1016/j.jlp.2018.01.002
    [14] GIARDINA M, MORALE M. Safety study of an LNG regasification plant using an FMECA and HAZOP integrated methodology[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 35-45. doi: 10.1016/j.jlp.2015.03.013
    [15] 于涵,张和生. 基于模糊综合评价的动车组牵引传动系统改进FMECA[J]. 铁道学报,2022,44(9): 33-41. doi: 10.3969/j.issn.100-8360.2022.09.05

    YU Han, ZHANG Hesheng. Improved FMECA for traction transmission system of EMU based on fuzzy comprehensive evaluation[J]. Journal of the China Railway Society, 2022, 44(9): 33-41. doi: 10.3969/j.issn.100-8360.2022.09.05
    [16] SUN Y G, LI F X, LIN G B, et al. Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments[J]. Journal of Zhejiang University: Science A, 2023, 24(3): 272-283. doi: 10.1631/jzus.A2200189
    [17] ZHAI M D, LONG Z Q, LI X L. Fault-tolerant control of magnetic levitation system based on state observer in high speed maglev train[J]. IEEE Access, 2019, 7: 31624-31633. doi: 10.1109/ACCESS.2019.2898108
    [18] 佘龙华,邹东升,李建泉,等. 磁悬浮控制器DSP的容错设计[J]. 机车电传动,2006(1): 33-35. doi: 10.3969/j.issn.1000-128X.2006.01.010

    SHE Longhua, ZOU Dongsheng, LI Jianquan, et al. Design of error tolerance for maglev controller DSP[J]. Electric Drive for Locomotives, 2006(1): 33-35. doi: 10.3969/j.issn.1000-128X.2006.01.010
    [19] SUNG H K, KIM D, CHO H, et al. Fault tolerant control of electromagnetic levitation system[J]. Advances in Industrial Control, 2004, 57(10): 676-689.
    [20] KIM H J, KIM C K, KWON S. Design of a fault-tolerant levitation controller for magnetic levitation vehicle[C]//2007 International Conference on Electrical Machines and Systems (ICEMS). Seoul: IEEE, 2007: 1977-1980.
    [21] ZHAI M D, LI X L, LONG Z Q. Research on redundancy and fault-tolerant control technology of levitation join-structure in high speed maglev train[M]//Proceedings of the 3rd International Conference on Electrical and Information Technologies for Rail Transportation (EITRT) 2017. Singapore: Springer, 2018: 671-678.
    [22] JANG K H, KOOK Y S, SHIN B C, et al. Redundancy performance of levitation controller for maglev vehicle EcoBee[C]//2018 21st International Conference on Electrical Machines and Systems (ICEMS). Jeju: IEEE, 2018: 898-902.
    [23] LIANG S, ZENG J W, JIN L, et al. Computer design and test of suspension control based on two-machine hot standby for speed maglev train[C]//2020 39th Chinese Control Conference (CCC). Shenyang: IEEE, 2020: 4147-4152.
    [24] JIN L, LONG Z Q, ZENG J W. Research on fault-tolerant control problem for suspension system of medium speed maglev train[C]//2017 29th Chinese Control and Decision Conference (CCDC). Chongqing: IEEE, 2017: 2993-2998.
    [25] 徐俊起,佟来生,荣立军,等. 磁浮列车悬浮控制系统工程化应用中的关键技术[J]. 城市轨道交通研究,2018,21(12): 14-17.

    XU Junqi, TONG Laisheng, RONG Lijun, et al. Key technologies of levitation control system applied to maglev train in practical engineering[J]. Urban Mass Transit, 2018, 21(12): 14-17.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  18
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 修回日期:  2024-09-17
  • 网络出版日期:  2025-05-22

目录

    /

    返回文章
    返回