Distributed Management Method for Geographic and Geological Knowledge Base for Railway Digital Twin
-
摘要:
高效的铁路工程地理地质知识服务是支撑数字孪生铁路多尺度多专业智能应用的重要基础. 为提高数字孪生铁路 “区域-工程-施工面”多尺度应用中的查询检索完整性和协同耦合分析能力,构建地理地质知识动态分布的元网络模型,设计以铁路多专业用户、业务部门、知识关联关系、多尺度应用场景为节点的知识库分布网络体系;实现分布优化的元网络打击算法,基于度中心度指标计算节点重要性,通过扰动分布关系网络分析分布影响力,计算节点的影响范围并得到知识库的分布优化结构;以某铁路特大桥工程的数字孪生铁路知识库管理及应用为实验场景,采用本文方法对已有知识库分布结构进行优化. 实验结果表明,在处理工程尺度和区域尺度的知识检索任务时,分布优化方法提高了查询检索结果的数量,缩短了查询检索时间,并提高了结果的匹配度.
Abstract:Efficient geographic and geological knowledge services for railway engineering form a crucial foundation for supporting the multi-scale and multi-disciplinary intelligent applications of digital twin technology in railways. To improve the completeness of query results and enhance the capability for integrated analysis across the multi-scale “region–engineering project–construction site” applications of railway digital twins, a meta-network model for the dynamic distribution of geographic and geological knowledge was proposed. This model was designed as a distributed knowledge base network system, with railway agents, business departments, knowledge relationships, and multi-scale application scenarios as key nodes. A meta-network disruption algorithm for distribution optimization was implemented, with node importance assessed using degree centrality indicators. By analyzing the distribution influence through network perturbation, the influence range of nodes was calculated, obtaining the optimized distribution structure of the knowledge base. To validate this approach, it was applied to optimize the distribution of the knowledge base within the knowledge base management and application scenario for railway digital twins of a major railway bridge project. Experimental results show that, when processing knowledge retrieval tasks at the engineering and regional scales, the distribution optimization method increases the number of query results with reduced retrieval time and enhanced result matching accuracy.
-
表 1 元网络节点的要素及代码
Table 1. Meta-network node elements and codes
要素 分类 内容及代码 用户
Agent业主人员 业主代表A01、项目经理A02、安全管理员A03 施工人员 项目经理A04、工程师A05、施工员A06 设计人员 项目经理A07、设计师A08、制图员A09 勘察人员 项目经理A10、勘察工程师A11 科研人员 教职工A12、研究生A13 单位
Organization业主单位 国铁集团O01、工程局O02、大桥局O03 施工单位 总承包商O04、桥梁公司O05、通信公司O06 其他单位 勘察设计单位O07、科研单位O08 应用场景
Event施工面尺度 表面形变E01、桩基钻孔E02、箱梁浇筑E03、护栏浇筑E04 工程尺度 桥面施工E05、隧道锚施工E06、重力锚施工E07、桥台施工E08 区域尺度 地质环境E09、灾害防控E10、污染治理E11 知识类型
Knowledge专家经验知识K01、领域知识图谱K02、工程实践知识K03、科研成果K04 知识关联
Relation空间关系 同义关系R01、上下位关系R02、更新关系R03 远R04、中R05、近R06、相同R07 表 2 优化前后多尺度检索性能表
Table 2. Multi-scale retrieval performance before and after optimization
任务内容 检索数目 检索时间 结果匹配度 优化前 优化后 优化前 优化后 优化前 优化后 施工面1 少 中 快 快 高 高 施工面2 少 中 快 快 高 高 施工面3 中 中 中 快 高 高 工程1 中 多 中 中 高 高 工程2 中 多 中 中 高 高 工程3 多 多 慢 中 中 高 区域1 中 多 中 中 中 高 区域2 多 多 慢 中 中 高 区域3 多 多 慢 中 中 高 -
[1] 朱庆,朱军,黄华平,等. 实景三维空间信息平台与数字孪生川藏铁路[J]. 高速铁路技术,2020,11(2): 46-53.ZHU Qing, ZHU Jun, HUANG Huaping, et al. Real 3D spatial information platform and digital twin Sichuan—Tibet railway[J]. High Speed Railway Technology, 2020, 11(2): 46-53. [2] 王同军. 智能高速铁路基础设施全生命周期管理框架研究[J]. 铁道学报,2021,43(11): 1-7.WANG Tongjun. Research on life-cycle management framework of intelligent high-speed railway infrasturcture[J]. Journal of the China Railway Society, 2021, 43(11): 1-7. [3] 王同军. 智能铁路总体架构与发展展望[J]. 铁路计算机应用,2018,27(7): 1-8. doi: 10.3969/j.issn.1005-8451.2018.07.003WANG Tongjun. Overall framework and development prospect of intelligent railway[J]. Railway Computer Application, 2018, 27(7): 1-8. doi: 10.3969/j.issn.1005-8451.2018.07.003 [4] 朱庆,张利国,丁雨淋,等. 从实景三维建模到数字孪生建模[J]. 测绘学报,2022,51(6): 1040-1049. doi: 10.11947/j.issn.1001-1595.2022.6.chxb202206024ZHU Qing, ZHANG Liguo, DING Yulin, et al. From real 3D modeling to digital twin modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1040-1049. doi: 10.11947/j.issn.1001-1595.2022.6.chxb202206024 [5] 林珲,朱庆,陈旻. 有无相生 虚实互济:虚拟地理环境研究20周年综述[J]. 测绘学报,2018,47(8): 1027-1030. doi: 10.11947/j.AGCS.2018.20180202LIN Hui, ZHU Qing, CHEN Min. The being and non-being generate each other, and the virtual and the real are mutually interactive: the progress of virtual geographic environments (VGE) studies in last 20 years[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1027-1030. doi: 10.11947/j.AGCS.2018.20180202 [6] 朱庆. 三维GIS及其在智慧城市中的应用[J]. 地球信息科学学报,2014,16(2): 151-157.ZHU Qing. Full three-dimensional GIS and its key roles in smart city[J]. Journal of Geo-Information Science, 2014, 16(2): 151-157. [7] LI H K, ZHU Q, ZHANG L G, et al. Integrated representation of geospatial data, model, and knowledge for digital twin railway[J]. International Journal of Digital Earth, 2022, 15(1): 1657-1675. doi: 10.1080/17538947.2022.2127949 [8] 朱庆,李函侃,曾浩炜,等. 面向数字孪生川藏铁路的实体要素分类与编码研究[J]. 武汉大学学报(信息科学版),2020,45(9): 1319-1327.ZHU Qing, LI Hankan, ZENG Haowei, et al. Classification and coding of entity features for digital twin Sichuan—Tibet railway[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1319-1327. [9] 王鑫,陈蔚雪,杨雅君,等. 知识图谱划分算法研究综述[J]. 计算机学报,2021,44(1): 235-260.WANG Xin, CHEN Weixue, YANG Yajun, et al. Research on knowledge graph partitioning algorithms: a survey[J]. Chinese Journal of Computers, 2021, 44(1): 235-260. [10] 朱庆,王所智,丁雨淋,等. 铁路隧道钻爆法施工智能管理的安全质量进度知识图谱构建方法[J]. 武汉大学学报(信息科学版),2022,47(8): 1155-1164.ZHU Qing, WANG Suozhi, DING Yulin, et al. A method of safety-quality-schedule knowledge graph for intelligent management of drilling and blasting construction of railway tunnels[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1155-1164. [11] 朱庆,苗双喜,丁雨淋,等. 知识引导的滑坡监测数据粗差定位与剔除方法[J]. 武汉大学学报(信息科学版),2017,42(4): 496-502.ZHU Qing, MIAO Shuangxi, DING Yulin, et al. Knowledge-guided gross errors detection and elimination approach of landslide monitoring data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502. [12] 杜志强,李钰,张叶廷,等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报(信息科学版),2020,45(9): 1344-1355.DU Zhiqiang, LI Yu, ZHANG Yeting, et al. Knowledge graph construction method on natural disaster emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355. [13] 朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12): 1551-1561.ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. [14] 张雪英,张春菊,吴明光,等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学,2020,50(7): 1019-1032. doi: 10.1360/SSI-2019-0269ZHANG Xueying, ZHANG Chunju, WU Mingguang, et al. Spatiotemporal features based geographical knowledge graph construction[J]. Scientia Sinica (Informationis), 2020, 50(7): 1019-1032. doi: 10.1360/SSI-2019-0269 [15] 张利国,丁雨淋,朱庆,等. 铁路地理地质数据“本体域-变化域-状态域” 三域关联的集成表达模型[J]. 武汉大学学报(信息科学版),2024,49(6): 1018-1027.ZHANG Liguo, DING Yulin, ZHU Qing, et al. A holistic multi-domain association model for railway geographic and geologic data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 1018-1027. [16] CARLEY K M, LEE J S, KRACKHARDT D. Destabilizing networks[J]. Connections, 2002, 24(3): 79-92. [17] FAN C, ZHANG C, YAHJA A, et al. Disaster City Digital Twin: a vision for integrating artificial and human intelligence for disaster management[J]. International Journal of Information Management, 2021, 56: 102049.1-102049.7. [18] LI Q C, DONG S J, MOSTAFAVI A. Metanetwork framework for analysis of actor-plan-task-infrastructure networks in resilience planning and management[J]. Natural Hazards Review, 2020, 21(2): 04020016.1-04020016.6. [19] LIU M, CHONG H Y, LIAO P C, et al. Risk-based metanetwork modeling for sustainable project performance in international construction[J]. Journal of Infrastructure Systems, 2021, 27(3): 04021020.1-0402102.7. [20] LIU S M, LU Y Q, LI J, et al. Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102-123. [21] GUO Y X, ZHU Q, DING Y L, et al. Efficient distributed association management method of data, model, and knowledge for digital twin railway[J]. International Journal of Digital Earth, 2024, 17(1): 536-545. [22] ZHOU B, BAO J S, LI J, et al. A novel knowledge graph-based optimization approach for resource allocation in discrete manufacturing workshops[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 608-617. [23] ZHANG H, QI Q L, TAO F. A multi-scale modeling method for digital twin shop-floor[J]. Journal of Manufacturing Systems, 2022, 62: 417-428. doi: 10.1016/j.jmsy.2021.12.011 [24] SHAO T Y, LI X Y, ZHAO X, et al. DSKRL: a dissimilarity-support-aware knowledge representation learning framework on noisy knowledge graph[J]. Neurocomputing, 2021, 461: 608-617. doi: 10.1016/j.neucom.2021.02.099 [25] MAZAHERI SOUDANI N, FATEMI A, NEMATBAKHSH M. An investigation of big graph partitioning methods for distribution of graphs in vertex-centric systems[J]. Distributed and Parallel Databases, 2020, 38(1): 1-29. doi: 10.1007/s10619-019-07256-z -