• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轨旁多传感器融合的曲线浮置板振动特性及列车异常分析

高天赐 江乐鹏 王源 刘晓舟 罗钦 何庆 王平

高天赐, 江乐鹏, 王源, 刘晓舟, 罗钦, 何庆, 王平. 轨旁多传感器融合的曲线浮置板振动特性及列车异常分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240423
引用本文: 高天赐, 江乐鹏, 王源, 刘晓舟, 罗钦, 何庆, 王平. 轨旁多传感器融合的曲线浮置板振动特性及列车异常分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240423
GAO Tianci, JIANG Lepeng, WANG Yuan, LIU Xiaozhou, LUO Qin, HE Qing, WANG Ping. Analysis of Vibration Characteristics of Curved Floating Slabs and Train Anomalies Based on Trackside Multi-Sensor Fusion[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240423
Citation: GAO Tianci, JIANG Lepeng, WANG Yuan, LIU Xiaozhou, LUO Qin, HE Qing, WANG Ping. Analysis of Vibration Characteristics of Curved Floating Slabs and Train Anomalies Based on Trackside Multi-Sensor Fusion[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240423

轨旁多传感器融合的曲线浮置板振动特性及列车异常分析

doi: 10.3969/j.issn.0258-2724.20240423
基金项目: 广东省普通高校创新团队(2022KCXTD027);国家自然科学基金(52208441)
详细信息
    作者简介:

    高天赐(1995—),男,博士后,博士,研究方向为铁路智能检测,E-mail:gaotianci@sztu.edu.cn

    通讯作者:

    刘晓舟(1989—),男,副教授, 研究方向为铁路轨道智能运维,E-mail: liuxiaozhou@sztu.edu.cn

  • 中图分类号: U213.2

Analysis of Vibration Characteristics of Curved Floating Slabs and Train Anomalies Based on Trackside Multi-Sensor Fusion

  • 摘要:

    为研究曲线以及列车状态对浮置板轨道振动响应的影响,在直线及曲线等多个地段的浮置板上安装便携式智能传感终端,测量列车通过时浮置板的振动加速度并计算相关位移;对比分析直线和曲线区段浮置板轨道的加速度、位移等振动特征,进而掌握其振动特性的差异;获得同一位置处不同列车通过时浮置板的振动特点,识别列车是否存在车轮不圆顺等病害. 研究结果表明:曲线地段浮置板轨道振动加速度大于缓和曲线地段和直线地段的,其中位于半径为500 m的浮置板板端垂向加速度95%分位数峰-峰值约为直线地段的5倍~10倍,而三者的垂向位移相差不大;相比与正常列车,车轮多边形列车通过浮置板时造成的加速度更加明显,垂向加速度95%分位数峰-峰值约为其3倍,而垂向位移基本相近;通过分析二者振动差异绘制的‘车辆谱’,能够辨识车轮不圆顺等病害,可为地铁浮置板区段的车辆病害快速检测提供技术参考.

     

  • 图 1  便携式智能传感终端现场布点示意

    Figure 1.  Arrangement of portable intelligent sensing terminals

    图 2  便携式智能传感终端现场布置

    Figure 2.  On-site deployment of portable intelligent sensing terminals

    图 3  不同地段浮置板垂向振动加速度

    Figure 3.  Vertical vibration acceleration of floating slabs in different sections

    图 4  各区段浮置板垂向振动峰-峰值统计结果

    Figure 4.  Statistical results of peak-to-peak vertical vibration of floating slabs in various sections

    图 5  各区段浮置板垂向振动功率谱

    Figure 5.  Vertical vibration power spectra of floating slabs across different sections

    图 6  位移积分结果

    Figure 6.  Results of displacement integration

    图 7  地铁列车特征长度示意(单位:m)

    Figure 7.  Illustration of metro trains’ characteristic length (unit: m)

    图 8  各区段浮置板垂向位移峰-峰值统计结果

    Figure 8.  Statistical results of peak-to-peak vertical displacement of floating slabs across different sections

    图 9  连续两趟列车通过同一位置浮置板垂向振动响应

    Figure 9.  Vertical vibration responses of a floating slab at the same location under two consecutive train passages

    图 10  不同列车通过同一位置浮置板垂向振动频谱

    Figure 10.  Vertical vibration spectra of a floating slab at the same location under different train passages

    表  1  便携式智能传感终端相关参数

    Table  1.   Parameters of portable intelligent sensing terminal

    指标 参数
    三维尺寸/mm 229/140/30
    质量/kg 0.4
    加速度量程 ± 8g
    加速度采样频率/Hz 1,000
    角速度量程/(°·s−1 15
    角速度采样频率/Hz 1,000
    信噪比/dBA 61
    噪声采样频率/Hz 16,000
    灵敏度/% 1
    下载: 导出CSV
  • [1] 农兴中,李祥,刘堂辉,等. 浮置板下声子晶体隔振器带隙特性研究[J]. 西南交通大学学报,2019,54(6): 1203-1209,1276. doi: 10.3969/j.issn.0258-2724.20180849

    NONG Xingzhong, LI Xiang, LIU Tanghui, et al. Band gap characteristics of vibration isolators of phononic crystals under floating slab[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1203-1209,1276. doi: 10.3969/j.issn.0258-2724.20180849
    [2] ALABBASI S, HUSSEIN M, ABDELJABER O, et al. A numerical and experimental investigation of a special type of floating-slab tracks[J]. Engineering Structures, 2020, 215: 110734. doi: 10.1016/j.engstruct.2020.110734
    [3] REN Y H, LI Q Y, QU S, et al. Floating slab track integrated with quasi-zero stiffness mechanism and dynamic vibration absorber for suppressing low-frequency vibration[J]. Vehicle System Dynamics, 2024: 1-25.
    [4] SONG Q Y, LI Q, THOMPSON D J. Comparison of time-domain and frequency-domain models for vibration prediction of a rail transit viaduct paved with floating slab track[J]. Engineering Structures, 2024, 310: 118157.1-118157.17
    [5] 韦凯,赵泽明,王显,等. 浮置板轨道减振垫的刚度测试与评价[J]. 西南交通大学学报,2022,57(4): 848-854,925. doi: 10.3969/j.issn.0258-2724.20200190

    WEI Kai, ZHAO Zeming, WANG Xian, et al. Stiffness test and evaluation method of floating slab track damping pad[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 848-854,925. doi: 10.3969/j.issn.0258-2724.20200190
    [6] WEI K, ZHAO Z M, DU X G, et al. A theoretical study on the train-induced vibrations of a semi-active magneto-rheological steel-spring floating slab track[J]. Construction and Building Materials, 2019, 204: 703-715. doi: 10.1016/j.conbuildmat.2019.01.210
    [7] HUANG X D, ZENG Z P, WANG D, et al. Experimental study on the vibration reduction characteristics of the floating slab track for 160 km/h urban rail transit[J]. Structures, 2023, 51: 1230-1244. doi: 10.1016/j.istruc.2023.03.115
    [8] ZHOU Q, HE Y P, LI M X, et al. A parametric study on the structural noise radiation characteristics of a steel spring floating slab track[J]. Advances in Mechanical Engineering, 2022, 14(9): 16878132221119921.1-16878132221119921.14.
    [9] XU Q Y, YAN B, LOU P, et al. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system[J]. Latin American Journal of Solids and Structures, 2015, 12(4): 649-674. doi: 10.1590/1679-78251327
    [10] HUANG X D, ZENG Z P, LI Z, et al. Comparative research on vibration characteristics of cast-In-place steel-spring-floating slab track under different subway line conditions[J]. Applied Sciences, 2022, 12(10): 5079.1-5079.25.
    [11] 李响,任尊松,徐宁. 地铁小半径曲线段钢弹簧浮置板轨道的钢轨波磨研究[J]. 铁道学报,2017,39(8): 70-76. doi: 10.3969/j.issn.1001-8360.2017.08.010

    LI Xiang, REN Zunsong, XU Ning. Study on rail corrugation of steel spring floating slab track on subway with small radius curve track[J]. Journal of the China Railway Society, 2017, 39(8): 70-76. doi: 10.3969/j.issn.1001-8360.2017.08.010
    [12] LI X, REN Z S, YANG Y F, et al. Research on the mechanism of rail corrugation of steel spring floating slab track on metro[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2024, 238(6): 616-627. doi: 10.1177/09544097231215869
    [13] WANG Y, XIAO H, NADAKATTI M M, et al. Mechanism of rail corrugation combined with friction self-excited vibration and wheel-track resonance[J]. Construction and Building Materials, 2023, 400: 132782.1-132782.16.
    [14] 靳永福,傅荣,查国涛,等. 地铁小半径曲线地段钢弹簧浮置板轨道振动特性测试及分析[J]. 铁道建筑,2020,60(12): 126-129. doi: 10.3969/j.issn.1003-1995.2020.12.30

    JIN Yongfu, FU Rong, ZHA Guotao, et al. Test and analysis on vibration characteristics of steel spring floating slab track in small radius curve section of metro[J]. Railway Engineering, 2020, 60(12): 126-129. doi: 10.3969/j.issn.1003-1995.2020.12.30
    [15] 王刘翀,刘冬娅,易强,等. 曲线地段钢弹簧浮置板轨道振动特性试验研究[J]. 铁道科学与工程学报,2019,16(3): 610-619.

    WANG Liuchong, LIU Dongya, YI Qiang, et al. Field test on vibration characteristic of steel-spring floating slab track in curve section[J]. Journal of Railway Science and Engineering, 2019, 16(3): 610-619.
    [16] 丁德云,王文斌,马蒙,等. 不同车速下钢弹簧浮置板轨道减振降噪性能试验研究[J]. 北京交通大学学报,2022,46(6): 144-151. doi: 10.11860/j.issn.1673-0291.20220015

    DING Deyun, WANG Wenbin, MA Meng, et al. Experimental study on vibration and noise reduction performance of steel-spring floating slab track under different train speeds[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 144-151. doi: 10.11860/j.issn.1673-0291.20220015
    [17] LU Y H, SHEN D J, SHAO H Z, et al. Numerical investigation on the failure mode of the upper shear hinge in steel spring floating slab track[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2024, 238(6): 628-638. doi: 10.1177/09544097231217555
    [18] 吴雪. 地铁曲线段钢弹簧浮置板轨道中置式剪力铰疲劳性能研究[D]. 成都:西南交通大学,2022.
    [19] 温士明,李伟,朱强强,等. 地铁车轮多边形磨损对浮置板轨道振动特性的影响[J]. 噪声与振动控制,2018,38(4): 116-122. doi: 10.3969/j.issn.1006-1355.2018.04.023

    WEN Shiming, LI Wei, ZHU Qiangqiang, et al. Influence of polygonal wear of metro wheels on vibration characteristics of floating slab tracks[J]. Noise and Vibration Control, 2018, 38(4): 116-122. doi: 10.3969/j.issn.1006-1355.2018.04.023
    [20] 施以旋,戴焕云,毛庆洲,等. 基于车轨耦合的地铁车轮多边形形成机理[J]. 西南交通大学学报,2024,59(6): 1357-1367,1388. doi: 10.3969/j.issn.0258-2724.20220785

    SHI Yixuan, DAI Huanyun, MAO Qingzhou et al. Study on Formation Mechanism of Metro Wheel Polygonal Based on Vehicle-Track Coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1357-1367,1388. doi: 10.3969/j.issn.0258-2724.20220785
    [21] 高天赐,江乐鹏,从建力,等. 基于车载振噪多源数据融合的地铁波磨快速检测方法研究[J/OL]. 西南交通大学学报,1-9[2025-04-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240715.1854.003.html.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2024-12-02
  • 网络出版日期:  2025-05-17

目录

    /

    返回文章
    返回