• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢轨波磨激励下的e型弹条振动疲劳断裂机理

董丙杰 陈光雄 冯晓航 任文娟 宋启峰 梅桂明

巩磊, 何派, 石勇, 祝长生. 主动磁悬浮轴承非奇异快速终端滑模转子位置控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240090
引用本文: 董丙杰, 陈光雄, 冯晓航, 任文娟, 宋启峰, 梅桂明. 钢轨波磨激励下的e型弹条振动疲劳断裂机理[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230707
GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240090
Citation: DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230707

钢轨波磨激励下的e型弹条振动疲劳断裂机理

doi: 10.3969/j.issn.0258-2724.20230707
基金项目: 国家自然科学基金项目(52175189)
详细信息
    作者简介:

    董丙杰(1986—),男,工程师,博士研究生,研究方向为轮轨摩擦学,E-mail:dbj1299@my.swjtu.edu.cn

    通讯作者:

    陈光雄(1962—),男,教授,博士,研究方向为摩擦振动与噪声、载流摩擦磨损,E-mail:chen_guangx@163.com

  • 中图分类号: U211

Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation

  • 摘要:

    为研究地铁小半径曲线轨道上e型弹条异常断裂的原因,通过长期跟踪和测量成都地铁X号线钢轨波磨的发展情况,并基于摩擦自激振动理论,建立轮对-轨道-扣件系统的全实体单元有限元模型;采用隐式动态分析方法和谐响应分析方法,研究短波长波磨、长波长波磨对e型弹条振动疲劳寿命的影响. 研究表明:这2种类型的钢轨波磨都会导致地铁e型弹条振动疲劳寿命减小;波磨幅值越大,导致弹条的振动疲劳寿命越小;钢轨波磨不仅能够引起e型弹条产生与钢轨波磨“同频”的受迫振动,还容易激发弹条产生该频率的倍频振动;对于短波长波磨而言,由于2倍频的存在,在相同波深幅值的短波长波磨影响下,25 mm 和40 mm波长的钢轨波磨最容易导致e型弹条产生振动疲劳断裂;波长为120 mm的长波长波磨的波深幅值较大时,激发出的6倍频振动导致弹条的振动疲劳寿命急剧减小;由于振动强度的减弱,波长为240 mm的长波长波磨对弹条振动疲劳寿命的影响有限.

     

  • 在大功率高转速旋转机械系统中,主动磁悬浮轴承(AMBs)具有无摩擦、无润滑等优点,使得其得到了广泛的应用[1-4]. 然而,如何控制AMBs转子稳定悬浮于期望位置一直以来是一个重要问题. AMBs是一个典型的非线性系统,一般采用局部线性化的方法进行建模[5],进而应用线性控制或非线性控制对其进行精确控制[6]. 工程上一般采用PID控制[7-8],但AMBs在运行中会受到一些扰动,同时工况的改变会使得PID控制的鲁棒性大幅减弱. 因此,需要控制器自身具有较强的鲁棒性以克服AMBs系统的内扰和外扰,从而有效地提高其可靠性.

    众多鲁棒控制算法中,滑模控制(SMC)具有适应性强、鲁棒性好、对未知参数和干扰不敏感、易于实现等优点,被广泛应用于包括AMBs在内的各种非线性系统. 然而,简单的滑模控制采用线性滑模函数,系统误差通常只能缓慢地渐近收敛,进而有学者采用基于动态非线性滑模函数的终端滑模控制方法,可以使得系统误差在有限的时间内实现快速收敛[9]. 文献[10]中提出的双滑模控制器用于对开关磁阻电机进行调速;文献[11]针对伺服电机系统设计了一种新的连续终端滑模控制器,能够有效提高系统的鲁棒性;文献[12]针对永磁直线同步电动机位置控制问题,采用非奇异快速终端滑模,从而使系统获得快速、精确的跟踪性能;文献[13]设计了滑模自抗扰控制器,实现了对AMBs的各自由度的解耦,减小了AMBs在高速运转下锥动对控制效果的影响;文献[14]在磁悬浮球系统中将自适应控制与终端滑模控制结合,以此来减小系统抖振,改善悬浮系统的动态性能;文献[15]在磁悬浮球系统中将广义比例积分观测器与终端滑模控制结合,避免切换函数增益过大,有效地减小了系统抖振.

    除了对滑模函数的设计,趋近律也需要进行优化,传统趋近律的切换增益为常数,系统抖振的大小与切换增益的大小有关. 超螺旋趋近律把切换增益改为与系统状态有关的幂函数,同时还利用积分函数对切换函数进行处理. 因此,超螺旋趋近律能够使系统状态在滑模面附近平滑且切换增益较小,减小系统抖振[16-17]. WANG等[18]将超螺旋趋近律与非奇异快速终端滑模相结合(SNFTSMC),以实现减小抖振并加快系统误差收敛.

    在AMBs系统中,传感器跳动、电磁场波动等外部因素经常会导致AMBs转子位置控制的精度受到影响,而且AMBs系统在建模过程中对系统做了线性化,也导致AMBs数学模型含有未建模部分. 虽然采用SNFTSMC能够抑制未建模部分和外部扰动带来的影响,但这需要增大切换增益,又会造成系统抖振. 因此,SNFTSMC在抑制抖振和扰动之间存在一定的矛盾. 此时,将未建模部分与外部扰动看作一个集总干扰,利用扩张状态感测器(ESO)对集总干扰进行观测,然后补偿给系统,这种方法在伺服系统中已经得到了广泛的应用[19-20]. 通常,线性ESO(LESO)参数易于整定,而非线性ESO(NESO)收敛精度高、鲁棒性强 [21-22].

    因此,针对主动磁悬浮轴承转子位置控制中存在响应速度慢、抗干扰能力弱2个问题,本文采用SNFTSMC作为控制算法,并通过ESO对集总干扰观测并补偿到系统中. 由于LESO对于AMBs非线性系统观测效果较差,因此,本文采用了NESO观测器. 根据李雅普诺夫稳定理论证明了所提方法的稳定性,并通过仿真和实验验证了系统具有强的鲁棒性以及低抖振性能.

    以径向单自由度的AMBs为研究对象,研究转子起浮运动. 单自由度AMBs系统通过传感器获得转子实际位移y;实际位移y与期望位置yr的误差e1输入到控制器中,控制器进行运算得到控制信号;之后,在与偏置信号进行差分;最后,将差分后的信号输送到功放器中产生相应的电流,电流被送到电磁铁线圈中,电磁铁产生吸力将转子吸引到期望位置. 具体工作原理如图1.

    图  1  单自由度AMBs系统原理
    Figure  1.  Principle of single-degree-of-freedom AMB system

    AMBs采用8级C型结构,根据麦克斯韦公式,2个磁极作用在转子上的电磁力为

    f=μ0n2i2Acosα/l2,
    (1)

    式中:i为线圈通入的电流,l为气隙长度,A为单个磁极截面积,μ0为真空磁导率,α为磁极之间夹角的一半,n为线圈匝数.

    电磁铁对转子的控制方式为差动控制,在垂直方向上以(i0y0)作为参考点,如图2. 当转子向上运动的位移为y时,转子与上方电磁铁之间的气隙间距变成y0y,则上方电磁铁线圈输入的工作电流为i0i;转子与下方电磁铁之间的气隙间距变成y0+y,下方电磁铁线圈输入的工作电流为i0+i,此时,在垂直方向上的合力为

    图  2  差动控制原理图
    Figure  2.  Principle of differential control
    f(i,y)=μ0An2[(i0iy0y)2(i0+iy0+y)2]cosα.
    (2)

    式(2)中将yi作为参考点(i0y0)的邻域,在参考点(i0y0)处对fiy)进行泰勒展开,如式(3).

    f(i,y)=kii+ksy+fR,
    (3)

    式中:fR为高次项部分(也称未建模部分);kiks分别为电流刚度系数和位移刚度系数,如式(4)、(5).

    ki=4μ0N2i0Acosα/y20,ks=4μ0N2i20Acosα/y30.
    (4)

    将重力mg、未知扰动fd都考虑到系统中,则系统的状态方程为

    {y=y1,˙y1=y2,˙y2=b0i+a0y1+d,
    (5)

    式中: a0为位移增益,a0=ki/mb0为位移增益,b0=ks/md为集总干扰,d=(fR + fdmg)/m.

    基于磁悬浮转子系统的数学模型,设计了非奇异快速终端滑模函数结构,具体表达式如式(6),相应结构如图3.

    图  3  非奇异快速终端滑模函数结构
    Figure  3.  Structure of non-singular fast terminal sliding mode function
    s=e1+k1|e1|asign(e1)+k2|e2|bsign(e2),
    (6)

    式中:k1k2ab为调节系数,k1>0,k2>0,1<b<2,a>be1=y1−yre2=$ {\dot y_1} - {\dot y_r} $.

    滑模面为滑模函数s=0,令式(6)为0,得到

    0=e1+k1|e1|asign(e1)+k2|e2|bsign(e2).
    (7)

    设误差e1从初始值e1(0)收敛到0所用的时间为tf,对式(7)进行求解,得到tf的解为[11]

    tf=|e1(0)|0k1/b2(e1+k1xa)1/bde1=b|e1(0)|11/bk1(b1)×F(1b,b1(a1)b;1 + b1(a1)b;k1|e1(0)|a1),
    (8)

    式中:F(·)为高斯几何函数.

    对式(6)求导为

    ˙s=e2+ak1|e1|a1e2+bk2|e2|b1˙e2.
    (9)

    忽略式(5)中集总干扰d,$\dot s $=0,可以得到等效控制器为

    ieq=1b0(¨yra0y11bk2|e2|2b(1+ak1|e1|a1)sign(e2)).
    (10)

    为了加快趋近速度和减小控制过程中出现的抖 振,采用超螺旋趋近律,具体表达式如式(11),其结构如图4.

    图  4  超螺旋趋近律结构
    Figure  4.  Structure of super-twisting reaching law

    超螺旋趋近律的具体表达式为

    ˙s=k3|s|csign(s)k4sign(s)dt,
    (11)

    式中:k3k4c为调节系数,k3>0,k4>0,0<c<1.

    滑模函数s距离滑模面s=0较远时,$ - {k_3}{\left| s \right|^c} $值较大,滑模函数s以较大的速度靠近滑模面s=0;滑模函数s距离滑模面s=0较小时,$ - {k_3}{\left| s \right|^c}{\mathrm{sign}}(s) $值较小,滑模函数s以较小的速度靠近滑模面s=0. 滑模函数中sign函数的切换增益($ - {k_3}{\left| s \right|^c} $)的大小决定抖振剧烈程度,采用超螺旋趋近律既能削弱抖振又能加快系统收敛.

    为了能够进一步加快滑模函数s到达滑模面s=0的速度及削弱抖振,可采用式(12)所示的趋近律.

    {˙s=k3|s|gsign(s)k4sign(s)dt,g=γλeη|e1|,
    (12)

    式中:γλη均为可调系数,g为关于γλη的指数函数,γ>1,0<λη>0.

    由式(12)可知,随着e1从初值e1(0)衰减到0,g从最初的较大值γλ$ {{\mathrm{e}}^{ - \eta \left| {{e_1}(0)} \right|}} $衰减到γλ,在这个过程中$ - {k_3}{\left| s \right|^g} $能够以更快的速度从较大值衰减到0,从而加快滑模函数s到达滑模面s=0的速度和减小抖振.

    因此,定义AMBs转子系统的切换控制器为

    isw=1b0[k3|s|gsign(s)k4sign(s)dt].
    (13)

    考虑到系统存在集总干扰,总的控制器为

    ic=ieq+isw1b0Msign(s),
    (14)

    式中:M为集总干扰d的上界,即$ d \leqslant \left| M \right| $.

    为了证明SNFTSMC控制器的稳定性,构造李雅普诺夫函数为

    V(s)=12s2,
    (15)
    ˙V(s)=s˙s=s[e2+ak1|e1|a1e2+bk2|e2|b1˙e2]=s[e2+ak1|e1|a1e2+bk2|e2|b1(b0ic+a0y1+d¨yr)]=s[e2+ak1|e1|a1e2+bk2|e2|b1(b0iswMsign(s)+d1bk2|e2|2b(1+ak1|e1|a1)×sign(e2))]=s[bk2|e2|b1(dMsign(s)+b0isw)]=bk2|e2|b1(dsM|s|k3|s|g+1k4|s|dt).
    (16)

    e2≠0时,已知k2k3k4b均大于0,且$ \left| d \right| $≤M,那么此时有

    ˙V(s)<bk2|e2|b1(k3|s|g+1k4|s|dt)<0.
    (17)

    此时,滑模函数s将在有限时间内到达滑模面s=0.

    e2=0时,联立式(14)与式(5)中,有

    ˙e2=k3|s|gsign(s)k4sign(s)dt+dMsign(s).
    (18)

    根据式(18),当滑模函数s>0时,$ {\dot e_2} \lt 0 $;当滑模函数s<0时,$ {\dot e_2} \lt 0 $. 图5为该控制器下的系统相轨迹,以滑模函数s2为例,e2=0、$ {\dot e_2} \lt 0 $时,e2必然会在某个邻域(0, + δ)内减小,此时滑模函数s2会必然会向下运动;当滑模函数s2到达邻域(0, + δ)时,e2≠0,滑模函数s2将会根据式(17)得出的结论到达滑模面s=0,滑模函数s4同理.

    图  5  AMBs系统相轨迹
    Figure  5.  Phase trajectory of AMB system

    集总干扰d是未知的,很难确定其具体的上界,而为了保证系统的稳定,一般上界M取值较大,将会加剧系统抖振. 为避免这种情况,本文通过设计ESO,并利用ESO对集总干扰d进行观测,得到较精确的观测值,然后将观测值补偿到控制器中. 本节先后分别对LESO与NESO进行研究与分析.

    对于二阶的AMBs转子系统,将集总干扰d扩张为新的状态变量y3,式(5)可以改写为

    {˙y1=y2,˙y2=b0i+a0y1+y3,˙y3=h,
    (19)

    式中:h为集总干扰d的变化率.

    根据式(19)可以写出LESO表达式为

    {˙z1=z2L1θ1,˙z2=b0i+a0z1+z3L2θ1,˙z3=L3θ1,
    (20)

    式中:L1L2L3为LESO增益,z1z2z3分别为y1y2y3的观测值,θ1=z1y1为观测误差.

    式(20)减去式(19)得到误差状态方程为

    {˙θ1=θ2L1θ1,˙θ2=a0θ1+θ3L2θ1,˙θ3=hL3θ1,
    (21)

    式中:θ2=z2y2θ3=z3y3.

    式(21)经过拉普拉斯变换后,有

    {θ2(s)=(s+L1)θ1(s),θ3(s)=sθ2(s)+(L2a0)θ1(s),h(s)=sy3(s)=sθ3(s)L3θ1(s).
    (22)

    整理式(22),得到θ3与−y3之间的传递函数为

    θ3y3=s3+L1s2+(L2a0)ss3+L1s2+(L2a0)s+L3.
    (23)

    为了使系统能够稳定,假设式(23)有3个极点(s1s2s3)都位于左半平面,p1=−ω0p2=−0.5ω0 + j0.5ω0p3=−0.5ω0−j0.5ω0ω0为带宽并大于0,那么有

    s3+L1s2+(L2a0)s+L3=(sp1)(sp2)(sp3).
    (24)

    可以解得

    [L1L2L3]=[2ω01.5ω20+a00.5ω30].
    (25)

    将式(25)带到式(23)中可得

    θ3y3=s3+2ω0s2+1.5ω20ss3+2ω0s2+1.5ω20s+0.5ω30.
    (26)

    根据式(26)做出不同带宽下的Bode图,如图6. 图6中:y3频率较低时,z3y3的跟踪效果较好;随着y3频率的增大,z3y3的跟踪性能逐渐变差;带宽增大后,z3y3跟踪效果逐渐变好,但带宽太大容易对系统中其他噪声敏感.

    图  6  不同带宽下的Bode图
    Figure  6.  Bode plots with different bandwidths

    由于LESO对集总扰动观测精度有限,现采用NESO对集总干扰进行观测,将式(20)改写为

    {˙z1=z2β1u1(θ1),˙z2=b0i+a0z1+z3β2u2(θ1),˙z3=β3u3(θ1),
    (27)

    式中:β1β2β3为待设计的观测器增益,均大于0;u1(θ1)、u2(θ1)、u3(θ1)为关于θ1的非线性函数,如式(28).

    {u1(θ1)=θ1,u2(θ1)=|θ1|12sign(θ1),u3(θ1)=|θ1|14sign(θ1).
    (28)

    NESO的参数一般很难通过理论去整定,通常根据经验来进行设计. 选择合适的β1β2β3,能够使得观测误差θ1θ2θ3在有限时间内收敛到0.

    NESO的结构框图如7.

    图  7  NESO结构图
    Figure  7.  Structure of NESO

    式(14)中所提到的sign函数切换增益为$ - ({k_3}{\left| s \right|^g} + M)/{b_0} $,其中$ - {k_3}{\left| s \right|^g}/{b_0} $的大小与系统状态有关,产生的抖振很小,而$ - M/{b_0} $为常值,会导致系统产生较大抖振. 因此,需要通过NESO对系统抖振进行补偿,进一步将控制器设计为

    ic=ieq+isw1b0z3.
    (29)

    接着,为了验证所提方法对系统稳定性产生的影响,对式(29)进行李亚普诺夫稳定性分析,即

    ˙V(s)=s˙s=s[bk2|e2|b1(d+b0iswz3)]=bk2|e2|b1(dsz3sk3|s|g+1k4|s|dt)<bk2|e2|b1(k3|s|g+1+|θ3||s|k4|s|dt).
    (30)

    根据对NESO的设计,θ3会收敛到0,可得到:

    ˙V(s)<bk2|e2|b1(k3|s|c+1k4|s|dt)<0.
    (31)

    通过分析得知,滑模函数s能够在有限时间内到达滑模面s=0,有效证明了所提方法的稳定性,进而搭建如图8所示的AMBs系统整体控制结构.

    图  8  AMBs系统整体控制结构
    Figure  8.  Overall control structure of AMB system

    表1为AMBs具体参数.

    表  1  AMBs参数
    Table  1.  Parameters of AMBs
    参数
    磁极面积/mm2 720
    匝数/圈 150
    气隙长度/mm 0.4
    偏置电流/A 2
    转子质量/kg 15
    电流刚度系数/(N·A−1 939.5
    位移刚度系数/(N·mm−1 4697.5
    下载: 导出CSV 
    | 显示表格

    为了能够对比出SNFTSMC的优越性能,在验证中加入传统SMC,表2为各个控制器参数.

    表  2  控制器参数
    Table  2.  Parameters of controller
    控制器
    SNFTSMCk1=1、k2=0.1、k3=80、k4=50、a=2.5、b=1.5、γ=1.5、λ=1、η=0.5、M=15
    SMCk1=30、k2=50、c=10、M=15
    下载: 导出CSV 
    | 显示表格

    忽略集总扰动时SNFTSMC、SMC分别为

    {iSNFTSMC=ieq+isw,iSMC =1b0[¨yrce2a0y1k1sk2sign(s)].
    (32)

    定义控制电流平均值为

    iavg=Nj=1|ij|N,
    (33)

    式中:ij为第j个采样点的电流值,1≤jNN为采样点数.

    根据式(32)中的控制器进行仿真,图9为起浮测试下的位移与控制电流. SNFTSMC、SMC到达目标位置的时间分别为0.38、0.62 s,SNFTSMC、SMC的最大控制电流分别为3.14、4.56 A. 根据式(33)得到SNFTSMC与SMC的电流平均值为分别为0.24、0.89 A.

    图  9  转子起浮位移和电流信号
    Figure  9.  Displacement and current signal in case of rotor suspension

    为探究控制器的追踪性能,对正弦波、方波进行追踪. 图10为正弦追踪下的结果,SNFTSMC、SMC追踪到正弦波的时间分别为0.41、0.62 s,控制电流最大值分别为3.60、6.17 A,电流平均值分别为1.04、1.16 A. 图11为方波追踪下的仿真结果,将方波追踪中4个阶段的稳定时间间隔累加起来,SNFTSMC、SMC所用时间分别为1.24、2.36 s;控制电流最大值分别为3.12、4.56 A;电流平均值分别为0.24、0.89 A.

    图  10  正弦追踪中转子位移和电流信号
    Figure  10.  Displacement and current signal of rotor under sinusoidal trace
    图  11  方波追踪中转子位移和电流信号
    Figure  11.  Displacement and current signal of rotor under square wave trace

    为对比LESO与NESO的观测性能,对正弦扰动sin(2πfot)进行观测,其频率fo从0增加到300 Hz. LESO带宽为500,NESO的观测增益β1β2β3分别为15000300050000. 图12为2种ESO对正弦信号的观测结果. 随着频率增大,2种ESO的观测性能均随之下降;在低频段中NESO观测器性能较好,其观测误差很小,而LESO在低频段中其观测误差依然很大,并且此时还是在LESO带宽取值较大的情况下. 因此,LESO观测性能不如NESO. 所以选用NESO对集总干扰进行观测.

    图  12  ESO观测结果
    Figure  12.  Observation results with ESO

    将外部扰动与未建模部分对考虑到系统中,SNFTSMC的控制器设计为式(14),SMC设计为

    iSMC=1b0[¨yrce2a0y1k1s(k2+M)sign(s)].
    (34)

    假设集总干扰d=−12.5 + 2.5sin(20πt),采用考虑到集总干扰而设计的控制器进行仿真,图13为抗干扰测试下的转子位移波形与控制电流波形. 由图13可知:SNFTSMC、SMC到达目标位置的时间分别为0.45、0.63 s,相较于没有集总干扰的情况下系统收敛时间增加;控制电流最大值分别为3.38、4.80 A,控制电流平均值分别为0.43、1.18 A;考虑到扰动后控制电流最大值与控制电流平均值都略微增大,并且SMC抖振加剧、SNFTSMC产生了小幅度抖振.

    图  13  集总干扰作用下转子起浮位移和电流信号
    Figure  13.  Displacement and current signal in case of rotor suspension under lumped interference

    集总干扰的存在会增大抖振,将SNFTSMC与NESO相结合,以此来减小由集总扰动引起的系统抖振. 图14为SNFTSMC+NESO、SMC+NESO这2种控制方法的仿真结果. 由图14可知:SNFTSMC+NESO、SMC+NESO到达目标位置的时间分别为0.40 s、0.62 s,与没有集总干扰的情况下系统收敛时间相近,即NESO能够消除集总干扰带来的影响;SNFTSMC+NESO、SMC+NESO在稳定时位移误差均为0,控制电流最大值分别为3.14、4.56 A,控制电流平均值分别为0.44、0.90 A.

    图  14  NESO补偿后转子起浮位移和电流信号
    Figure  14.  Displacement and current signal in case of rotor suspension with NESO compensation

    为验证所提方法的正确性和有效性,搭建了基于RT-Lab的磁悬浮轴承转子系统实验平台. 实验装置由磁悬浮电机性能测试平台、功放测试平台、径向磁悬浮轴承和轴向磁悬浮轴承等组成,如图15所示.

    图  15  磁悬浮高速电机转子系统实验平台
    Figure  15.  Experimental platform of rotor system with magnetic suspension high-speed motor

    首先,通过采用SNFTSMC、SMC 2种控制器进行转子起伏测试,转子起浮位移和电流信号如图16所示. 可以得知,采用SNFTSMC、SMC转子从底端上升到目标位置所用的时间分别为0.41、0.94 s,并且SMC的控制电流存在剧烈的抖振,SNFTSMC、SMC的电流平均值分别为0.53、1.68 A.

    图  16  转子起浮位移和电流信号
    Figure  16.  Displacement and current signal in case of rotor suspension

    其次,为验证控制器的抗干扰性能,对转子施加正弦扰动进行起浮测试,转子起浮位移和电流信号如图17所示. 图17中SNFTSMC、SMC到达目标位置所用的时间分别为0.43、0.98 s,SNFTSMC、SMC的电流平均值分别为0.84、2.00 A,并且SNFTSMC也产生了抖振.

    图  17  扰动作用下转子起浮位移和电流信号
    Figure  17.  Displacement and current signal in case of rotor suspension under interference

    最后,引入NESO来对干扰进行补偿,转子位移和控制电流如图18所示. 图18中SNFTSMC+NESO和SMC+NESO到达目标位置所用的时间分别为0.42、0.95 s,其电流平均值分别为1.65、0.66 A,2种控制器下的电流抖振得到了有效减小.

    图  18  NESO补偿后转子起浮位移和电流信号
    Figure  18.  Displacement and current signal in case of rotor suspension with NESO compensation

    1) 工程设计中由于考虑算法的简明性,通常会采用传统滑模控制器,若要提高主动磁悬浮轴承转子位置的动态控制性能,可将传统滑模控制率改进为本文所提出超螺旋趋近律.

    2) 非奇异快速终端滑模函数的设计能够使系统误差得到快速收敛,而超螺旋趋近律利用幂函数以及对滑模函数的积分使得切换增益在滑模面s=0处较小,实际工况中可根据快速性和鲁棒性要求进行选择滑模函数和趋近律的设计.

    3) 引入的NESO能够对系统内外扰动进行观测并补偿到系统中,有效减小扰动对控制结果的影响,但实际工况下观测值补偿可能是离线的,在线补偿对控制器设计要求较高. 特别是要考虑观测器引起的相位滞后,在控制器设计过程中选择合适的前馈补偿将相位进行补偿.

    致谢:感谢陕西省教育厅一般专项(青年)23JK0339资助;海洋工程全国重点实验室(上海交通大学)专项经费号GKZD010089.

  • 图 1  小半径曲线轨道的低轨上产生的短波长波磨和长波长波磨

    Figure 1.  Short-pitch and long-pitch rail corrugation arising on low rail of small-radius curved tracks

    图 2  发生在钢轨波磨区域的e型弹条断裂

    Figure 2.  e-type clip fracture occurring in rail corrugation area

    图 3  现场锤击试验

    Figure 3.  On-site hammer impact test

    图 4  地铁e型弹条振动加速度的PSD分析结果

    Figure 4.  PSD analysis results of vibration acceleration of e-type clip

    图 5  e型弹条的实物结构

    Figure 5.  Structure of e-type clip

    图 6  扣件系统的有限元模型

    Figure 6.  Finite element model of fastening system

    图 7  e型弹条的前三阶应力模态云图

    Figure 7.  Cloud map of first three stress modals of e-type clip

    图 8  e型弹条不同位置的Mises应力

    Figure 8.  Mises stress at various positions of e-type clip

    图 9  e型弹条振动加速度的谐响应分析结果

    Figure 9.  Harmonic response analyis results of vibration acceleration of e-type clip

    图 10  轮对-轨道-扣件系统有限元模型

    Figure 10.  Finite element model of wheelset‒rail‒fastening system

    图 11  预测得到的轮轨系统不稳定振动的频率

    Figure 11.  Predicted unstable vibration frequencies in wheelset‒rail system

    图 12  添加了周期性不平顺的有限元模型(振幅放大8倍)

    Figure 12.  Finite element model with periodic irregularity (vibration amplitude is enlarged by 8 times)

    图 13  不同轨道上的弹条振动加速度

    Figure 13.  Vibration acceleration of e-type clip on different tracks

    图 14  e型弹条振动加速的PSD分析结果

    Figure 14.  PSD analysis resukts of vibration acceleration of e-type clip

    图 15  钢轨波磨影响下的e型弹条振动疲劳寿命云图

    Figure 15.  Cloud map of vibration fatigue life of e-type clip under influence of rail corrugation

    图 16  短波长波磨的幅值、波长变化对弹条振动疲劳寿命的影响

    Figure 16.  Effect of amplitude and wavelength variation in short-pitch rail corrugation on vibration fatigue life of clip

    图 17  弹条振动加速度PSD分析结果

    Figure 17.  PSD analysis results of vibration acceleration of clip

    图 18  长波长波磨的幅值变化对弹条振动疲劳寿命的影响

    Figure 18.  Effect of amplitude variation in long-pitch rail corrugation on vibration fatigue life of clip

    图 19  长波长波磨引起的弹条振动加速度PSD分析结果

    Figure 19.  PSD analysis results of vibration acceleration of clip caused by long-pitch rail corrugation

    表  1  2处曲线轨道的线路参数

    Table  1.   Line parameters of two curved tracks

    位置 缓和曲线
    长度/m
    超高/
    mm
    曲线
    半径/m
    曲线
    长度/m
    第 1 处
    曲线轨
    70 85 500 199.280
    第 2 处
    曲线轨
    60 115 350 651.031
    下载: 导出CSV

    表  2  发生在弯轨上的钢轨波磨的位置信息及类型

    Table  2.   Types and location information of rail corrugation at curved tracks

    区段 第 1 次观测
    (开通前)
    第 2 次观测
    (空载试运营)
    第 3 次观测
    (开通后两个月)
    第 4 次观测
    (开通后一年)
    R = 350 m 的曲线轨道低轨 无波磨 短波:
    22~25 mm
    短波:
    22~30 mm
    短波:22~30 mm、40~50 mm
    长波:120~250 mm
    R = 350 m 的曲线轨道高轨 无波磨 无波磨 无波磨 无波磨
    R = 500 m 的曲线轨道高轨和低轨 无波磨 无波磨 无波磨 无波磨
    直线轨道 无波磨 无波磨 无波磨 无波磨
    下载: 导出CSV

    表  3  扣件系统的材料参数

    Table  3.   Material parameters of fastening system

    部件 密度/
    (g·cm−3
    弹性模量/
    MPa
    泊松比
    轨距挡块 1.57 8500 0.4
    弹条 7.80 2.06 × 105 0.3
    铁垫板 7.80 1.73 × 105 0.26
    下载: 导出CSV

    表  4  不同“低通信号”下的e型弹条振动疲劳寿命

    Table  4.   Vibration fatigue life of e-type clips under influence of different “low-pass signals”

    信号 振动疲劳寿命/(×106次)
    完整信号 1.18
    2.0 kHz“低通” 1.185
    1.2 kHz“低通” 2.637
    下载: 导出CSV
  • [1] COLLETTE C, VANHONACKER P, BASTAITS R, et al. Comparison between time and frequency studies of a corrugated curve of RER Paris network[J]. Wear, 2008, 265(9): 1249-1258.
    [2] TORSTENSSON P T, NIELSEN J C O. Monitoring of rail corrugation growth due to irregular wear on a railway metro curve[J]. Wear, 2009, 267(1/2/3/4): 556-561.
    [3] CARLBERGER A, TORSTENSSON P T, NIELSEN J C, et al. An iterative methodology for the prediction of dynamic vehicle–track interaction and long-term periodic rail wear[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1718-1730. doi: 10.1177/0954409717747127
    [4] 陈光雄. 钢轨波磨预测模型验证工况的研究[J]. 西南交通大学学报,2022,57(5): 1017-1023,1054.

    CHEN Guangxiong. Study on validation conditions of rail corrugation prediction models[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1017-1023,1054.
    [5] ZHANG H G, LIU W N, LIU W F, et al. Study on the cause and treatment of rail corrugation for Beijing metro[J]. Wear, 2014, 317(1/2): 120-128.
    [6] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    [7] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [8] OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9/10): 1231-1237.
    [9] VALEHRACH J, GUZIUR P, RIHA T, et al. Assessment of rail long-pitch corrugation[J]. IOP Conference Series: Materials Science and Engineering,2017,236:012048.1-012048.8.
    [10] 杜茂金. 南京地铁DT Ⅵ2型扣件弹条折断原因分析[J]. 城市轨道交通研究,2009,12(7): 40-42.

    DU Maojin. Analysis of DT Ⅵ2 type fastener broken shells in Nanjing metro[J]. Urban Mass Transit, 2009, 12(7): 40-42.
    [11] 肖宏,马春生,郭骁,等. e型扣件弹条断裂原因频谱分析[J]. 同济大学学报(自然科学版),2017,45(7): 1000-1008.

    XIAO Hong, MA Chunsheng, GUO Xiao, et al. Fractures of e-type fastening clip by spectral analysis method[J]. Journal of Tongji University (Natural Science), 2017, 45(7): 1000-1008.
    [12] LING L, LI W, SHANG H X, et al. Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings[J]. Vehicle System Dynamics, 2014, 52(9): 1211-1231. doi: 10.1080/00423114.2014.934844
    [13] WANG P, LU J, ZHAO C Y, et al. Numerical investigation of the fatigue performance of elastic rail clips considering rail corrugation and dynamic axle load[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 235(3): 339-352.
    [14] XIAO H, WANG J B, ZHANG Y R. The fractures of e-type fastening clips used in the subway: theory and experiment[J]. Engineering Failure Analysis, 2017, 81: 57-68. doi: 10.1016/j.engfailanal.2017.07.006
    [15] XIAO H, GUO X, Wang H Y, et al. Fatigue damage analysis and life prediction of e-clip in railway fasteners based on ABAQUS and FE-SAFE[J]. Advances in Mechanical Engineering, 2018, 10(3): 1-12.
    [16] MA D K, SHI J, YAN Z Q, et al. Experimental and numerical investigation of the effect of the assembled state on the static-dynamic characteristics and fatigue performance of railway fastening clips[J]. Structures, 2022, 46: 1808-1822. doi: 10.1016/j.istruc.2022.11.038
    [17] HASAP A, PAITEKUL P, NORAPHAIPHIPAKSA N, et al. Influence of toe load on the fatigue resistance of elastic rail clips[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(4): 1078-1087. doi: 10.1177/0954409717707834
    [18] HASAP A, PAITEKUL P, NORAPHAIPHIPAKSA N, et al. Analysis of the fatigue performance of elastic rail clip[J]. Engineering Failure Analysis, 2018, 92: 195-204. doi: 10.1016/j.engfailanal.2018.05.013
    [19] 崔晓璐,彭双千,徐佳,等. 钢轨波磨区段科隆蛋扣件弹条断裂机理[J]. 西南交通大学学报,2023:1-9.

    CUI Xiaolu, PENG Shuangqian, XU Jia, et al. Fracture Mechanism of Cologne-Egg Fastener Clip in Corrugated Sections of Metros[J]. Journal Of Southwest Jiaotong University, 2023: 1-9.
    [20] SADEGHI J, SEYEDKAZEMI M, KHAJEHDEZFULY A. Nonlinear simulation of vertical behavior of railway fastening system[J]. Engineering Structures,2020,209(C):110340.13-110340.13.
    [21] 徐井芒,梁新缘,王凯,等. 扣件刚度非线性对波磨区轮轨瞬态滚动接触行为影响研究[J]. 西南交通大学学报,2024,59(2): 1-8.

    Xu Jingmang, Liang Xinyuan, Wang Kai, et al. Influence of fastener stiffness nonlinearity on wheel-rail transient rolling contact behavior in corrugated area[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 1-8.
    [22] WANG Z Q, LEI Z Y, ZHAO Y, et al. Rail Corrugation Characteristics of Cologne Egg Fastener Section in Small Radius Curve[J]. Shock and Vibration, 2020, 2020: 1-12.
    [23] LIU X G, WANG P. Investigation of the generation mechanism of rail corrugation based on friction induced torsional vibration[J]. Wear, 2021, 468/469: 203593, 9.
    [24] GRASSIE S L. Rail corrugation: a problem solved?[J]. Wear, 2023, 530/531(9/10): 1-8.
    [25] DONG B J, CHEN G X, SONG Q F, et al. Study on long-term tracking of rail corrugation and the influence of parameters[J]. Wear, 2023, 523(1-2): 1-13.
    [26] SUN L L, YAN Z Q, XIAO J H, et al. Experimental analysis of the modal characteristics of rail fastening clips[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 234(2): 134-141.
    [27] OREGUI M, LI Z, DOLLEVOET R. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements[J]. Mechanical Systems and Signal Processing, 2015, 54/55: 224-242. doi: 10.1016/j.ymssp.2014.08.024
    [28] KINKAID N, O’REILLY O, PAPADOPOULOS P. Automotive disc brake squeal[J]. Journal of Sound and Vibration, 2003, 267(1): 105-166. doi: 10.1016/S0022-460X(02)01573-0
    [29] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 弹簧钢:GB/T 1222—2016[S]. 北京:中国标准出版社,2016.
    [30] CUI X L, BAO P Y, LI Tong, et al. Research on the failure mechanism of elastic strip fracture in corrugated sections of metros[J]. Engineering Failure Analysis, 2023, 143: 1-12.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  85
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-03-13
  • 网络出版日期:  2024-07-25

目录

/

返回文章
返回