• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢轨波磨激励下的e型弹条振动疲劳断裂机理

董丙杰 陈光雄 冯晓航 任文娟 宋启峰 梅桂明

董丙杰, 陈光雄, 冯晓航, 任文娟, 宋启峰, 梅桂明. 钢轨波磨激励下的e型弹条振动疲劳断裂机理[J]. 西南交通大学学报, 2025, 60(5): 1287-1295. doi: 10.3969/j.issn.0258-2724.20230707
引用本文: 董丙杰, 陈光雄, 冯晓航, 任文娟, 宋启峰, 梅桂明. 钢轨波磨激励下的e型弹条振动疲劳断裂机理[J]. 西南交通大学学报, 2025, 60(5): 1287-1295. doi: 10.3969/j.issn.0258-2724.20230707
DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1287-1295. doi: 10.3969/j.issn.0258-2724.20230707
Citation: DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1287-1295. doi: 10.3969/j.issn.0258-2724.20230707

钢轨波磨激励下的e型弹条振动疲劳断裂机理

doi: 10.3969/j.issn.0258-2724.20230707
基金项目: 国家自然科学基金项目(52175189)
详细信息
    作者简介:

    董丙杰(1986—),男,工程师,博士研究生,研究方向为轮轨摩擦学,E-mail:dbj1299@my.swjtu.edu.cn

    通讯作者:

    陈光雄(1962—),男,教授,博士,研究方向为摩擦振动与噪声、载流摩擦磨损,E-mail:chen_guangx@163.com

  • 中图分类号: U211

Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation

  • 摘要:

    为研究地铁小半径曲线轨道上e型弹条异常断裂的原因,通过长期跟踪和测量成都地铁X号线钢轨波磨的发展情况,并基于摩擦自激振动理论,建立轮对-轨道-扣件系统的全实体单元有限元模型;采用隐式动态分析方法和谐响应分析方法,研究短波长波磨、长波长波磨对e型弹条振动疲劳寿命的影响. 研究表明:这2种类型的钢轨波磨都会导致地铁e型弹条振动疲劳寿命减小;波磨幅值越大,导致弹条振动疲劳寿命越小;钢轨波磨不仅能够引起e型弹条产生与钢轨波磨“同频”的受迫振动,还容易激发弹条产生该频率的倍频振动;对于短波长波磨而言,由于2倍频的存在,在相同波深幅值的短波长波磨影响下,25 mm 和40 mm波长的钢轨波磨最容易导致e型弹条产生振动疲劳断裂;波长为120 mm的长波长波磨的波深幅值较大时,激发出的6倍频振动导致弹条振动疲劳寿命急剧减小;由于振动强度的减弱,波长为240 mm的长波长波磨对弹条振动疲劳寿命的影响有限.

     

  • 图 1  小半径曲线轨道低轨上产生的短波长波磨和长波长波磨

    Figure 1.  Short-pitch and long-pitch rail corrugation arising on low rail of small-radius curved tracks

    图 2  发生在钢轨波磨区域的e型弹条断裂

    Figure 2.  e-type clip fracture occurred in rail corrugation area

    图 3  现场锤击试验

    Figure 3.  On-site hammer impact test

    图 4  地铁e型弹条振动加速度的PSD分析结果

    Figure 4.  PSD analysis results of vibration acceleration of e-type clip

    图 5  e型弹条的实物结构

    Figure 5.  Structure of e-type clip

    图 6  扣件系统的有限元模型

    Figure 6.  Finite element model of fastening system

    图 7  e型弹条的前三阶应力模态云图

    Figure 7.  Cloud map of first three stress modals of e-type clip

    图 8  e型弹条不同位置的Mises应力

    Figure 8.  Mises stress at various positions of e-type clip

    图 9  e型弹条振动加速度的谐响应分析结果

    Figure 9.  Harmonic response analyis results of vibration acceleration of e-type clip

    图 10  轮对-轨道-扣件系统有限元模型

    Figure 10.  Finite element model of wheelset‒rail‒fastening system

    图 11  预测得到的轮轨系统不稳定振动的频率

    Figure 11.  Predicted unstable vibration frequencies in wheelset‒rail system

    图 12  添加了周期性不平顺的有限元模型(振幅放大8倍)

    Figure 12.  Finite element model with periodic irregularity (vibration amplitude is enlarged by 8 times)

    图 13  不同轨道上的弹条振动加速度

    Figure 13.  Vibration acceleration of e-type clip on different tracks

    图 14  e型弹条振动加速度的PSD分析结果

    Figure 14.  PSD analysis resukts of vibration acceleration of e-type clip

    图 15  钢轨波磨影响下的e型弹条振动疲劳寿命云图

    Figure 15.  Cloud map of vibration fatigue life of e-type clip under influence of rail corrugation

    图 16  短波长波磨的幅值、波长变化对弹条振动疲劳寿命的影响

    Figure 16.  Effect of amplitude and wavelength variation in short-pitch rail corrugation on vibration fatigue life of clip

    图 17  弹条振动加速度PSD分析结果

    Figure 17.  PSD analysis results of vibration acceleration of clip

    图 18  长波长波磨的幅值变化对弹条振动疲劳寿命的影响

    Figure 18.  Effect of amplitude variation in long-pitch rail corrugation on vibration fatigue life of clip

    图 19  长波长波磨引起的弹条振动加速度PSD分析结果

    Figure 19.  PSD analysis results of vibration acceleration of clip caused by long-pitch rail corrugation

    表  1  2段曲线轨道的线路参数

    Table  1.   Line parameters of two curved tracks

    位置 缓和曲线
    长度/m
    超高/
    mm
    曲线
    半径/m
    曲线
    长度/m
    第 1 段 70 85 500 199.280
    第 2 段 60 115 350 651.031
    下载: 导出CSV

    表  2  发生在弯轨上的钢轨波磨的位置信息及类型

    Table  2.   Types and location information of rail corrugation at curved tracks

    区段 第 1 次观测
    (开通前)
    第 2 次观测
    (空载试运营)
    第 3 次观测
    (开通后2个月)
    第 4 次观测
    (开通后1年)
    R = 350 m 的曲线轨道低轨 无波磨 短波:
    22~25 mm
    短波:
    22~30 mm
    短波:22~30、40~50 mm,
    长波:120~250 mm
    R = 350 m 的曲线轨道高轨 无波磨 无波磨 无波磨 无波磨
    R = 500 m 的曲线轨道高轨和低轨 无波磨 无波磨 无波磨 无波磨
    直线轨道 无波磨 无波磨 无波磨 无波磨
    下载: 导出CSV

    表  3  扣件系统的材料参数

    Table  3.   Material parameters of fastening system

    部件 密度/
    (g·cm−3
    弹性模量/
    MPa
    泊松比
    轨距挡块 1.57 8500 0.40
    弹条 7.80 2.06 × 105 0.30
    铁垫板 7.80 1.73 × 105 0.26
    下载: 导出CSV

    表  4  不同“低通信号”下的e型弹条振动疲劳寿命

    Table  4.   Vibration fatigue life of e-type clips under influence of different “low-pass signals”

    信号 振动疲劳寿命/(×106 次)
    完整信号 1.180
    2.0 kHz“低通” 1.185
    1.2 kHz“低通” 2.637
    下载: 导出CSV
  • [1] COLLETTE C, VANHONACKER P, BASTAITS R, et al. Comparison between time and frequency studies of a corrugated curve of RER Paris network[J]. Wear, 2008, 265(9): 1249-1258.
    [2] TORSTENSSON P T, NIELSEN J C O. Monitoring of rail corrugation growth due to irregular wear on a railway metro curve[J]. Wear, 2009, 267(1/2/3/4): 556-561.
    [3] CARLBERGER A, TORSTENSSON P T, NIELSEN J C, et al. An iterative methodology for the prediction of dynamic vehicle–track interaction and long-term periodic rail wear[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1718-1730. doi: 10.1177/0954409717747127
    [4] 陈光雄. 钢轨波磨预测模型验证工况的研究[J]. 西南交通大学学报, 2022, 57(5): 1017-1023, 1054.

    CHEN Guangxiong. Study on validation conditions of rail corrugation prediction models[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1017-1023, 1054.
    [5] ZHANG H G, LIU W N, LIU W F, et al. Study on the cause and treatment of rail corrugation for Beijing metro[J]. Wear, 2014, 317(1/2): 120-128.
    [6] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    [7] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [8] OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9/10): 1231-1237.
    [9] VALEHRACH J, GUZIUR P, RIHA T, et al. Assessment of rail long-pitch corrugation[J]. IOP Conference Series: Materials Science and Engineering, 2017, 236: 012048.1-012048.8.
    [10] 杜茂金. 南京地铁DT Ⅵ2型扣件弹条折断原因分析[J]. 城市轨道交通研究, 2009, 12(7): 40-42.

    DU Maojin. Analysis of DT Ⅵ2 type fastener broken shells in Nanjing metro[J]. Urban Mass Transit, 2009, 12(7): 40-42.
    [11] 肖宏, 马春生, 郭骁, 等. e型扣件弹条断裂原因频谱分析[J]. 同济大学学报(自然科学版), 2017, 45(7): 1000-1008.

    XIAO Hong, MA Chunsheng, GUO Xiao, et al. Fractures of e-type fastening clip by spectral analysis method[J]. Journal of Tongji University (Natural Science), 2017, 45(7): 1000-1008.
    [12] LING L, LI W, SHANG H X, et al. Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings[J]. Vehicle System Dynamics, 2014, 52(9): 1211-1231. doi: 10.1080/00423114.2014.934844
    [13] WANG P, LU J, ZHAO C Y, et al. Numerical investigation of the fatigue performance of elastic rail clips considering rail corrugation and dynamic axle load[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 235(3): 339-352.
    [14] XIAO H, WANG J B, ZHANG Y R. The fractures of e-type fastening clips used in the subway: theory and experiment[J]. Engineering Failure Analysis, 2017, 81: 57-68. doi: 10.1016/j.engfailanal.2017.07.006
    [15] XIAO H, GUO X, WANG H Y, et al. Fatigue damage analysis and life prediction of e-clip in railway fasteners based on ABAQUS and FE-SAFE[J]. Advances in Mechanical Engineering, 2018, 10(3): 1-12.
    [16] MA D K, SHI J, YAN Z Q, et al. Experimental and numerical investigation of the effect of the assembled state on the static-dynamic characteristics and fatigue performance of railway fastening clips[J]. Structures, 2022, 46: 1808-1822. doi: 10.1016/j.istruc.2022.11.038
    [17] HASAP A, PAITEKUL P, NORAPHAIPHIPAKSA N, et al. Influence of toe load on the fatigue resistance of elastic rail clips[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(4): 1078-1087. doi: 10.1177/0954409717707834
    [18] HASAP A, PAITEKUL P, NORAPHAIPHIPAKSA N, et al. Analysis of the fatigue performance of elastic rail clip[J]. Engineering Failure Analysis, 2018, 92: 195-204. doi: 10.1016/j.engfailanal.2018.05.013
    [19] 崔晓璐, 彭双千, 徐佳, 等. 钢轨波磨区段科隆蛋扣件弹条断裂机理[J]. 西南交通大学学报, 2025, 60(1): 205-213.

    CUI Xiaolu, PENG Shuangqian, XU Jia, et al. Fracture mechanism of cologne-egg fastener clips in rail corrugation sections[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 205-213.
    [20] SADEGHI J, SEYEDKAZEMI M, KHAJEHDEZFULY A. Nonlinear simulation of vertical behavior of railway fastening system[J]. Engineering Structures, 2020, 209(C): 110340.13-110340.13.
    [21] 徐井芒, 梁新缘, 王凯, 等. 扣件刚度非线性对波磨区轮轨瞬态滚动接触行为影响研究[J]. 西南交通大学学报, 2024, 59(2): 1-8.

    XU Jingmang, LIANG Xinyuan, WANG Kai, et al. Influence of fastener stiffness nonlinearity on wheel-rail transient rolling contact behavior in corrugated area[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 1-8.
    [22] WANG Z Q, LEI Z Y, ZHAO Y, et al. Rail corrugation characteristics of cologne egg fastener section in small radius curve[J]. Shock and Vibration, 2020, 2020: 1-12.
    [23] LIU X G, WANG P. Investigation of the generation mechanism of rail corrugation based on friction induced torsional vibration[J]. Wear, 2021, 468/469: 203593.
    [24] GRASSIE S L. Rail corrugation: a problem solved?[J]. Wear, 2023, 530/531(9/10): 1-8.
    [25] DONG B J, CHEN G X, SONG Q F, et al. Study on long-term tracking of rail corrugation and the influence of parameters[J]. Wear, 2023, 523(1-2): 1-13.
    [26] SUN L L, YAN Z Q, XIAO J H, et al. Experimental analysis of the modal characteristics of rail fastening clips[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 234(2): 134-141.
    [27] OREGUI M, LI Z, DOLLEVOET R. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements[J]. Mechanical Systems and Signal Processing, 2015, 54/55: 224-242. doi: 10.1016/j.ymssp.2014.08.024
    [28] KINKAID N, O’REILLY O, PAPADOPOULOS P. Automotive disc brake squeal[J]. Journal of Sound and Vibration, 2003, 267(1): 105-166. doi: 10.1016/S0022-460X(02)01573-0
    [29] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 弹簧钢: GB/T 1222—2016[S]. 北京: 中国标准出版社, 2016.
    [30] CUI X L, BAO P Y, LI Tong, et al. Research on the failure mechanism of elastic strip fracture in corrugated sections of metros[J]. Engineering Failure Analysis, 2023, 143: 1-12.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  199
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-03-13
  • 网络出版日期:  2024-07-25
  • 刊出日期:  2024-03-26

目录

    /

    返回文章
    返回