• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于多种群遗传算法的磁浮列车自抗扰速度控制

李自康 戴春辉 黄翠翠 龙志强

李自康, 戴春辉, 黄翠翠, 龙志强. 基于多种群遗传算法的磁浮列车自抗扰速度控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240113
引用本文: 李自康, 戴春辉, 黄翠翠, 龙志强. 基于多种群遗传算法的磁浮列车自抗扰速度控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240113
LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240113
Citation: LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240113

基于多种群遗传算法的磁浮列车自抗扰速度控制

doi: 10.3969/j.issn.0258-2724.20240113
基金项目: 国家自然科学基金项目(52332011)
详细信息
    作者简介:

    李自康(1995—),男,博士研究生,研究方向为电磁悬浮与推进控制,E-mail:lizikang24@nudt.edu.cn

    通讯作者:

    戴春辉(1984—),男,副研究员,博士,研究方向为电磁悬浮与推进控制、智能诊断与容错控制,E-mail:daichunhui@nudt.edu.cn

  • 中图分类号: U238

Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm

  • 摘要:

    相较传统轮轨交通方式,磁浮列车具有速度快、噪音小、平稳性高、维护成本低等不可替代的优势,为构建便捷顺畅的城市交通系统提供一种理想方案. 为实现磁浮列车在复杂扰动环境下的精准速度运行控制,提出一种参数自整定的自抗扰控制(ADRC)方法. 首先,通过受力分析建立磁浮列车纵向动力学模型,用于描述运行控制过程中的非线性迟滞特性;将模型不确定参数及外部扰动等因素归纳为扩张状态,设计三阶扩张状态观测器实时观测扩张状态,并基于李雅普诺夫稳定性定理对观测器的收敛性条件进行分析;针对传统ADRC控制参数多、调参困难的问题,引入多种群遗传算法(MPGA)实现参数自适应优化和调整;最后,利用磁浮列车现场运行采集的数据开展仿真实验,结果表明:相较传统ADRC,MPGA-ADRC在速度控制精度方面提升22.7%,跟踪平稳性提升25.6%,表明所提出的方法能够有效提升磁浮列车运行的稳定性和乘坐舒适性.

     

  • 图 1  磁浮列车MPGA-ADRC控制框架

    Figure 1.  MPGA-ADRC frame of maglev train

    图 2  MPGA算法原理

    Figure 2.  Principle of MPGA

    图 3  适应度变化过程

    Figure 3.  Change process of fitness

    图 4  参数调整过程

    Figure 4.  Process of parameters’ adjustment

    图 5  基于MPGA-ADRC的磁浮列车速度控制结构

    Figure 5.  Speed control structure of maglev train based on MPGA-ADRC

    图 6  唐山线固定限速曲线及ATO跟踪曲线

    Figure 6.  Fixed speed limit curve and ATO tracking curve of Tangshan Line

    图 7  对唐山线的跟踪效果

    Figure 7.  Tracking effect of Tangshan Line

    图 8  速度跟踪误差

    Figure 8.  Speed tracking errors

    图 9  加速度误差

    Figure 9.  Acceleration errors

    图 10  ESO观测效果

    Figure 10.  Observation effect of ESO

    图 11  ESO观测误差

    Figure 11.  Observation errors of ESO

    表  1  算法效果对比

    Table  1.   Comparison of algorithm effects

    运行次数 MPGA SGA
    迭代次数/次 最优值 迭代次数/次 最优值
    第1次 27 0.0776 50 0.0769
    第2次 25 0.0776 50 0.0776
    第3次 21 0.0776 50 0.0764
    下载: 导出CSV

    表  2  MPGA-ADRC控制参数

    Table  2.   Control parameters of MPGA-ADRC

    名称 控制参数
    TD $ \delta = 0.9 $,$ h = 0.01 $,$ {h_0} = 0.011 $
    ESO $ \alpha = 0.5 $,$ \tau = 0.01 $,$ {\beta _1} = 1\;009.3 $,
    $ {\beta _2} = 1\;559.7 $,$ {\beta _3} = 4\;397.3 $
    NLSEF $ {k_{\text{p}}} = 17.3 $,$ {k_{\text{d}}} = 14.8 $
    下载: 导出CSV

    表  3  控制器性能比较

    Table  3.   Comparison of controllers performance

    名称 最大速度误差(m·s−1 速度RMSE(m·s−1 加速度RMSE(m·s−2
    ADRC 0.4841 0.1468 0.1320
    GA-ADRC 0.4211 0.1294 0.1135
    MPGA-ADRC 0.3109 0.1135 0.0982
    下载: 导出CSV
  • [1] 龙志强,窦峰山,王志强,等. 高速磁浮悬浮导向控制技术现状及展望[J]. 前瞻科技,2023,2(4): 78-88.

    LONG Zhiqiang, DOU Fengshan, Wang Zhiqiang, et al. Current status and prospect of high speed maglev levitation guidance control technology[J]. Science and Technology foresight, 2023, 2(4): 78-88.
    [2] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [3] SUN Y G, QIANG H Y, WANG L, et al. A fuzzy-logic-system-based cooperative control for the multielectromagnets suspension system of maglev trains with experimental verification[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(10): 3411-3422. doi: 10.1109/TFUZZ.2023.3257036
    [4] 何之煜,徐宁. 非参数化迭代学习控制的列车自动驾驶控制算法[J]. 铁道学报,2020,42(12): 90-96. doi: 10.3969/j.issn.1001-8360.2020.12.012

    HE Zhiyu, XU Ning. Research on automatic train operation algorithm based on non-parametric iterative learning control[J]. Journal of the China Railway Society, 2020, 42(12): 90-96. doi: 10.3969/j.issn.1001-8360.2020.12.012
    [5] 王青元,吴鹏,冯晓云,等. 基于自适应终端滑模控制的城轨列车精确停车算法[J]. 铁道学报,2016,38(2): 56-63. doi: 10.3969/j.issn.1001-8360.2016.02.008

    WANG Qingyuan, WU Peng, FENG Xiaoyun, et al. Precise automatic train stop control algorithm based on adaptive terminal sliding mode control[J]. Journal of the China Railway Society, 2016, 38(2): 56-63. doi: 10.3969/j.issn.1001-8360.2016.02.008
    [6] MAO Z H, YAN X G, JIANG B, et al. Adaptive fault-tolerant sliding-mode control for high-speed trains with actuator faults and uncertainties[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2449-2460. doi: 10.1109/TITS.2019.2918543
    [7] LIN X, DONG H R, YAO X M, et al. Neural adaptive fault-tolerant control for high-speed trains with input saturation and unknown disturbance[J]. Neurocomputing, 2017, 260: 32-42. doi: 10.1016/j.neucom.2017.02.083
    [8] JI H H, HOU Z S, ZHANG R K. Adaptive iterative learning control for high-speed trains with unknown speed delays and input saturations[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 260-273. doi: 10.1109/TASE.2014.2371816
    [9] SUN Y G, HE Z Y, XU J Q, et al. Cooperative model predictive levitation control for two-points electromagnetic levitation system of high-speed maglev vehicle[J]. IEEE Transactions on Intelligent Vehicles, 2023, 99: 1-12.
    [10] 龙志强,李云,王旭. 基于自抗扰控制的磁浮列车自动驾驶算法研究[C]//第27届中国控制会议. 昆明:北京航空航天大学出版社,2008:681-685.
    [11] 黄翠翠,李晓龙,杨洋,等. 基于自抗扰技术的机械电磁悬浮复合隔振控制[J]. 西南交通大学学报,2022,57(3): 582-587. doi: 10.3969/j.issn.0258-2724.20210850

    HUANG Cuicui, LI Xiaolong, YANG Yang, et al. Mechanical-electromagnetic suspension compound vibration isolation control based on active disturbance rejection technology[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 582-587. doi: 10.3969/j.issn.0258-2724.20210850
    [12] 王盼盼,杨杰,邹吉强,等. 基于改进自抗扰控制器的磁浮列车速度跟踪控制研究[J]. 铁道科学与工程学报,2023,20(1): 310-320.

    WANG Panpan, YANG Jie, ZOU Jiqiang, et al. Design maglev train speed tracking system based on improved active disturbance rejection controller[J]. Journal of Railway Science and Engineering, 2023, 20(1): 310-320.
    [13] LU Z X, CHEN C J. Research on decoupling control for module suspension system based on linear active disturbance rejection control[C]//2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). Chengdu: IEEE, 2023: 260-265.
    [14] ZHANG B J, KE Z H, LI Z Y, et al. Yawing stability and manipulative approach design for maglev car based on active disturbance rejection control[J]. Asian Journal of Control, 2024, 26(2): 1003-1016. doi: 10.1002/asjc.3246
    [15] 罗京,胡伟,刘豫湘. 中低速磁浮列车牵引特性分析和计算[J]. 电力机车与城轨车辆,2010,33(6): 21-22,26. doi: 10.3969/j.issn.1672-1187.2010.06.006

    LUO Jing, HU Wei, LIU Yuxiang. Traction characteristic analysis and calculation of mid-low speed maglev trains[J]. Electric Locomotives & Mass Transit Vehicles, 2010, 33(6): 21-22,26. doi: 10.3969/j.issn.1672-1187.2010.06.006
    [16] 杨光. 高速磁浮列车最优速度曲线及其跟踪控制研究[D]. 北京:北京交通大学,2007.
    [17] 谢云德,龙志强. 高精度快速非线性离散跟踪微分器[J]. 控制理论与应用,2009,26(2): 127-132.

    XIE Yunde, LONG Zhiqiang. A high-speed nonlinear discrete tracking-differentiator with high precision[J]. Control Theory & Applications, 2009, 26(2): 127-132.
    [18] 董聪,郭晓华. 广义遗传算法的逻辑结构及全局收敛性的证明[J]. 计算机科学,1998,25(5): 38-42.

    DONG Cong, GUO Xiaohua. Logical structure of generalized genetic algorithm and a proof of its global convergence. Computer Science, 1998, 25(5): 38-42.
    [19] SHI H F, WU S Y, KE Z H, et al. Speed-range-based novel guideway configuration with variable material and thickness for PMECB[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2514913.
    [20] 连文博,刘伯鸿,李婉婉,等. 基于自抗扰控制的高速列车自动驾驶速度控制[J]. 铁道学报,2020,42(1): 76-81.

    LIAN Wenbo, LIU|Bohong, LI Wanwan, et al. Automatic operation speed control of high-speed train based on ADRC[J]. Journal of the China Railway Society, 2020, 42(1): 76-81.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  12
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-08-25
  • 网络出版日期:  2025-03-05

目录

    /

    返回文章
    返回