Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

磁悬浮直驱式无油涡旋压缩机模糊PID控制研究

段振云 刘洋 孙凤 史策 徐方超 金俊杰 张晓友 陈熙

段振云, 刘洋, 孙凤, 史策, 徐方超, 金俊杰, 张晓友, 陈熙. 磁悬浮直驱式无油涡旋压缩机模糊PID控制研究[J]. 西南交通大学学报, 2025, 60(4): 1013-1023. doi: 10.3969/j.issn.0258-2724.20240600
引用本文: 段振云, 刘洋, 孙凤, 史策, 徐方超, 金俊杰, 张晓友, 陈熙. 磁悬浮直驱式无油涡旋压缩机模糊PID控制研究[J]. 西南交通大学学报, 2025, 60(4): 1013-1023. doi: 10.3969/j.issn.0258-2724.20240600
JING Yongzhi, FENG Wei, WANG Sen, MA Xianchao, HAO Jianhua, DONG Jinwen. Levitation Control Strategy Based on Adaptive Non-singular Terminal Sliding Mode[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 566-573. doi: 10.3969/j.issn.0258-2724.20210743
Citation: DUAN Zhenyun, LIU Yang, SUN Feng, SHI Ce, XU Fangchao, JIN Junjie, ZHANG Xiaoyou, CHEN Xi. Research on Fuzzy Proportional Integral Differential Control of Magnetic Drive Oil-free Scroll Compressor[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1013-1023. doi: 10.3969/j.issn.0258-2724.20240600

磁悬浮直驱式无油涡旋压缩机模糊PID控制研究

doi: 10.3969/j.issn.0258-2724.20240600
基金项目: 国家自然科学基金项目(52375258,52405284);国家重点研发计划(2024YFB3410002);中国博士后科学基金(2024M762160);辽宁省科技厅项目(2023-BS-127);辽宁省教育厅项目(LJ222410142008,JYTMS20231191,LJ212410142015)
详细信息
    作者简介:

    段振云(1971—),男,教授,研究方向为复杂曲面加工及齿轮技术,E-mail:13604045543@139.com

    通讯作者:

    孙凤(1978—),男,教授,研究方向为机械系统多元驱动及其控制技术,E-mail:sunfeng@sut.edu.cn

  • 中图分类号: TH455

Research on Fuzzy Proportional Integral Differential Control of Magnetic Drive Oil-free Scroll Compressor

  • 摘要:

    磁悬浮直驱式无油涡旋压缩机采用电磁力非接触式驱动动涡盘运动. 针对压缩机系统非线性较强、PID (proportional-integral-differential)控制下轨迹跟踪误差较大的问题设计了一种模糊PID控制器,可以在线实时修正控制参数,提高轨迹跟踪效果. 首先,介绍了磁悬浮直驱式无油涡旋压缩机的结构和工作原理,建立电磁驱动力的数学模型和系统动力学模型,并进行系统稳定性分析;其次,添加模糊逻辑,进行模糊控制器设计;最后,在控制参数相同的情况下,将PID与模糊PID 2种控制下的阶跃响应与轨迹跟踪结果进行对比分析. 结果表明:相较于PID控制,模糊PID控制下,阶跃响应时的稳定时间减少0.461 s,稳态误差减小0.012 mm;轨迹跟踪时,XY方向达到稳定跟踪的时间分别减少0.365、0.090 s;XY方向的最大轨迹跟踪误差分别减小0.043、0.060 mm,最大相对误差分别减小了50%、60%.

     

  • 图 1  磁悬浮直驱式无油涡旋压缩机结构

    Figure 1.  Structure of MDOFSC

    图 2  电磁驱动机构的结构参数

    Figure 2.  Structural parameters of electromagnetic actuator

    图 3  系统受力分析

    Figure 3.  System force analysis

    图 4  磁悬浮直驱式无油涡旋压缩机模糊PID控制原理

    Figure 4.  Fuzzy PID control principle of MDOFSC

    图 5  输入、输出变量的隶属函数

    Figure 5.  Membership functions of input and output variables

    图 6  0.1 mm位移阶跃响应仿真

    Figure 6.  Step response simulation at 0.1 mm displacement

    图 7  PID控制下轨迹跟踪仿真

    Figure 7.  Trajectory tracking simulation under PID control

    图 8  模糊PID控制下轨迹跟踪仿真

    Figure 8.  Trajectory tracking simulation under fuzzy PID control

    图 9  负载突变下模糊PID控制仿真

    Figure 9.  Simulation of fuzzy PID control under sudden load changes

    图 10  原理样机实验系统

    Figure 10.  Principle prototype control system

    图 11  Y方向阶跃响应实验

    Figure 11.  Step response experiment for Y direction

    图 12  PID控制下轨迹跟踪实验结果

    Figure 12.  Experimental results of trajectory tracking under PID control

    图 13  模糊PID控制下轨迹跟踪实验结果

    Figure 13.  Experimental results of trajectory tracking under fuzzy PID control

    图 14  负载突变下模糊PID控制实验

    Figure 14.  Fuzzy PID control experiment under sudden load changes

    表  1  系统参数

    Table  1.   System parameters

    结构参数 数值
    J/(kg•m2) 1.51 × 10−3
    m/kg 1.7
    kiX/(N•A−1) 150
    kdX/(N•m−1) −75 × 10−3
    kiY/(N•A−1) 180
    kdY/(N•m−1) −57 × 10−3
    kn/(N•mm−1) 4.544
    c/(N•s•m−1) 40 × 103
    H/m 0.0195
    L/m 0.021
    下载: 导出CSV

    表  2  ΔKP模糊规则表

    Table  2.   Fuzzy control rules of ΔKP

    e ce
    NB NM NS ZO PS PM PB
    NB PB PB PM PM PS ZO ZO
    NM PB PB PM PS PS ZO NS
    NS PM PM PM PS ZO NS NS
    ZO PM PM PS ZO NS NM NM
    PS PS PS ZO NS NS NM NM
    PM PS ZO NS NM NM NM NB
    PB ZO ZO NM NM NM NB NB
    下载: 导出CSV

    表  3  ΔKI模糊规则表

    Table  3.   Fuzzy control rules of ΔKI

    e ce
    NB NM NS ZO PS PM PB
    NB NB NB NM NM PS NS ZO
    NM NB NB NM NS NS ZO ZO
    NS NB NM NS NS ZO PS PS
    ZO NM NM NS ZO PS PM PM
    PS NM NS ZO PS PS PM PB
    PM ZO ZO PS PS PM PB NB
    PB ZO ZO PS PM PM PB PB
    下载: 导出CSV

    表  4  ΔKD模糊规则表

    Table  4.   Fuzzy control rules of ΔKD

    e ce
    NB NM NS ZO PS PM PB
    NB PS NS NB NB NB NM PS
    NM PS NS NB NM NM NS ZO
    NS ZO NS NM NM ZO NS ZO
    ZO ZO NS NS NM NB NS ZO
    PS PS PS ZO NS NS NM NM
    PM PS ZO NS NM NM NM NB
    PB ZO ZO NM NM NM NB NB
    下载: 导出CSV
  • [1] CARDONE M, GARGIULO B. Numerical simulation and experimental validation of an oil free scroll compressor[J]. Energies, 2020, 13(22): 5863.1-5863.11. doi: 10.3390/en13225863
    [2] 刘振全. 涡旋式流体机械与涡旋压缩机[M]. 北京:机械工业出版社,2009.
    [3] 王立存,董光辉,王旭东,等. 通用型线电动涡旋压缩机的结构设计及动态仿真[J]. 中国机械工程,2017,28(6): 728-733. doi: 10.3969/j.issn.1004-132X.2017.06.015

    WANG Licun, DONG Guanghui, WANG Xudong, et al. Structural design and dynamic simulation of a general profile electric scroll compressor[J]. China Mechanical Engineering, 2017, 28(6): 728-733. doi: 10.3969/j.issn.1004-132X.2017.06.015
    [4] 孟浩,李奥,李海生,等. 无油涡旋压缩机开槽涡旋齿的变形行为研究[J]. 流体机械,2022,50(3): 66-72,104. doi: 10.3969/j.issn.1005-0329.2022.03.011

    MENG Hao, LI Ao, LI Haisheng, et al. Research on deformation behavior of grooved scroll teeth for oil-free scroll compressor[J]. Fluid Machinery, 2022, 50(3): 66-72,104. doi: 10.3969/j.issn.1005-0329.2022.03.011
    [5] SUN J, PENG B, ZHU B G. Numerical simulation and experimental research of oil-free scroll air compressor based on CFD[J]. Recent Patents on Mechanical Engineering, 2022, 15(3): 328-339. doi: 10.2174/2212797614666210830154422
    [6] CHENG S, FENG Y Z, WANG K, et al. Tribo-dynamics modeling and analysis of key friction pairs in scroll compressor with floating fixed scroll design[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 2270-2285. doi: 10.1080/19942060.2022.2146754
    [7] 彭斌,刘慧鑫,陶耀辉. 基于变径基圆渐开线涡旋压缩机的几何模型及优化研究[J]. 上海交通大学学报,2023,57(8): 1046-1054.

    PENG Bin, LIU Huixin, TAO Yaohui. Geometrical model and optimization of scroll compressor based on involute of circle with variable radii[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1046-1054.
    [8] ZHENG S Y, WEI M S, ZHOU Y, et al. Tangential leakage flow control with seal-grooves on the static scroll of a CO2 scroll compressor[J]. Applied Thermal Engineering, 2022, 208: 118213.1-118213.12. doi: 10.1016/j.applthermaleng.2022.118213
    [9] 郝胜利,马国远,许树学,等. 电动车空调用变壁厚涡旋压缩机的性能研究[J]. 流体机械,2020,48(4): 24-28,41. doi: 10.3969/j.issn.1005-0329.2020.04.005

    HAO Shengli, MA Guoyuan, XU Shuxue, et al. Research on performance of variable wall thickness scroll compressors for electric vehicle air conditioning[J]. Fluid Machinery, 2020, 48(4): 24-28,41. doi: 10.3969/j.issn.1005-0329.2020.04.005
    [10] WANG J, HAN Y, PAN S Y, et al. Design and development of an oil-free double-scroll air compressor used in a PEM fuel cell system[J]. Renewable Energy, 2022, 199: 840-851. doi: 10.1016/j.renene.2022.08.154
    [11] HE Z L, JI L T, XING Z W. Experimental investigation on the DLC film coating technology in scroll compressors of automobile air conditioning[J]. Energies, 2020, 13(19): 5103.1-5103.16.
    [12] GUTH T, ATAKAN B. Semi-empirical model of a variable speed scroll compressor for R-290 with the focus on compressor efficiencies and transferability[J]. International Journal of Refrigeration, 2023, 146: 483-499. doi: 10.1016/j.ijrefrig.2022.10.024
    [13] TRUONG T N, VO A T, KANG H J. Real-time implementation of the prescribed performance tracking control for magnetic levitation systems[J]. Sensors, 2022, 22(23): 9132.1-9132.16.
    [14] ZHAO C, OKA K, SUN F, et al. Design of zero-power control strategy with resisting tilt of hybrid magnetic levitation system[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 11394-11402. doi: 10.1109/TIE.2021.3121670
    [15] 罗成,张昆仑,靖永志. 新型Halbach阵列永磁电动悬浮系统垂向稳定性[J]. 交通运输工程学报,2019,19(2): 101-109. doi: 10.3969/j.issn.1671-1637.2019.02.010

    LUO Cheng, ZHANG Kunlun, JING Yongzhi. Vertical stability of permanent magnet EDS system with novel Halbach array[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 101-109. doi: 10.3969/j.issn.1671-1637.2019.02.010
    [16] 刘淑琴,边忠国,李瑞建,等. 磁悬浮人工心脏泵及其在体外循环系统上的试验研究[J]. 西南交通大学学报,2023,58(4): 820-826,862. doi: 10.3969/j.issn.0258-2724.20211012

    LIU Shuqin, BIAN Zhongguo, LI Ruijian, et al. Maglev artificial heart pump and experimental study on ECMO[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 820-826,862. doi: 10.3969/j.issn.0258-2724.20211012
    [17] 赵春发,刘浩东,冯洋,等. 五位姿参数下车载永磁体与永磁轨道之间的磁力特性研究[J]. 西南交通大学学报,2024,59(4): 804-811. doi: 10.3969/j.issn.0258-2724.20240049

    ZHAO Chunfa, LIU Haodong, FENG Yang, et al. Magnetic force characteristics between on-board permanent magnet and permanent magnetic rail considering five pose parameters[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 804-811. doi: 10.3969/j.issn.0258-2724.20240049
    [18] CHEN J J, LU X. Least-current maneuver sequence for electromagnetic suspension control subjected to large perturbation found by direct collocation[J]. Journal of the Chinese Institute of Engineers, 2022, 45(5): 391-401. doi: 10.1080/02533839.2022.2061598
    [19] SUN Y P, LAN Y P. Research on self-learning fuzzy control of controllable excitation magnetic suspension linear synchronous motor[J]. Journal of Electrical Engineering & Technology, 2020, 15(2): 843-854. [19] SUN Y P, LAN Y P. Research on self-learning fuzzy control of controllable excitation magnetic suspension linear synchronous motor[J]. Journal of Electrical Engineering & Technology, 2020, 15(2): 843-854.
    [20] 许贤泽,宋明星,龚勇兴,等. 基于扰动补偿的磁悬浮转台分数阶滑模控制[J]. 西南交通大学学报,2024,59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412

    XU Xianze, SONG Mingxing, GONG Yongxing, et al. Fractional-order sliding mode control for maglev rotary table based on disturbance compensation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 766-775. doi: 10.3969/j.issn.0258-2724.20230412
    [21] YAO X, CHEN Z B. Sliding mode control with deep learning method for rotor trajectory control of active magnetic bearing system[J]. Transactions of the Institute of Measurement and Control, 2019, 41(5): 1383-1394. doi: 10.1177/0142331218778324
    [22] 靖永志,冯伟,王森,等. 基于自适应非奇异终端滑模的悬浮控制策略[J]. 西南交通大学学报,2022,57(3): 566-573. doi: 10.3969/j.issn.0258-2724.20210743

    JING Yongzhi, FENG Wei, WANG Sen, et al. Levitation control strategy based on adaptive non-singular terminal sliding mode[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 566-573. doi: 10.3969/j.issn.0258-2724.20210743
    [23] 翟明达,张博,李晓龙,等. 基于模糊PID控制的准零刚度磁悬浮隔振平台的设计与实现[J]. 西南交通大学学报,2023,58(4): 886-895. doi: 10.3969/j.issn.0258-2724.20220880

    ZHAI Mingda, ZHANG Bo, LI Xiaolong, et al. Design and implementation of magnetic suspension vibration isolation platform with quasi-zero stiffness based on fuzzy PID control[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 886-895. doi: 10.3969/j.issn.0258-2724.20220880
    [24] SHI C, SUN F, XU F, et al. Analysis of trajectory tracking characteristics of a magnetically driven oil-free scroll compressor[J]. Actuators, 2022, 11(11): 312.1-312.13. doi: 10.3390/act11110312
    [25] 史策,徐方超,孙凤,等. 磁力涡旋压缩机永磁随变机构的力学特性[J]. 西南交通大学学报,2022,57(3): 597-603. doi: 10.3969/j.issn.0258-2724.20210986

    SHI Ce, XU Fangchao, SUN Feng, et al. Mechanical properties of scroll compressor with permanent magnetic compliance mechanism[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 597-603. doi: 10.3969/j.issn.0258-2724.20210986
  • 期刊类型引用(5)

    1. 李至勇,杨杰,周发助,胡海林. 电磁悬浮系统的改进滑模控制方法. 电子测量技术. 2024(04): 87-94 . 百度学术
    2. 柯炎,王胜虎. 基于火电机组的协同线性自抗扰协调控制策略. 电子设计工程. 2024(14): 100-104+109 . 百度学术
    3. 胡轲珽,徐俊起,刘志刚,林国斌. 基于强化学习的电磁悬浮型磁浮列车悬浮控制. 同济大学学报(自然科学版). 2023(03): 332-340 . 百度学术
    4. 杨杰,秦耀,汪永壮,张振利. 永磁电磁混合型磁浮球的改进滑模控制方法. 湖南大学学报(自然科学版). 2023(04): 200-209 . 百度学术
    5. 陈萍,史天成,于明月,单磊. 基于模型参考自适应的自学习悬浮控制策略. 西南交通大学学报. 2023(04): 799-807 . 本站查看

    其他类型引用(7)

  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  33
  • PDF下载量:  13
  • 被引次数: 12
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-02-10
  • 网络出版日期:  2025-04-29
  • 刊出日期:  2025-02-26

目录

    /

    返回文章
    返回