• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于抗剪老化的板式支座摩擦滑动性能试验研究

崔皓蒙 邵长江 王春阳 薛豪 高健 黎志忠 庄卫林 漆启明

崔皓蒙, 邵长江, 王春阳, 薛豪, 高健, 黎志忠, 庄卫林, 漆启明. 基于抗剪老化的板式支座摩擦滑动性能试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240180
引用本文: 崔皓蒙, 邵长江, 王春阳, 薛豪, 高健, 黎志忠, 庄卫林, 漆启明. 基于抗剪老化的板式支座摩擦滑动性能试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240180
CUI Haomeng, SHAO Changjiang, WANG Chunyang, XUE Hao, GAO Jian, LI Zhizhong, ZHUANG Weilin, QI Qiming. Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240180
Citation: CUI Haomeng, SHAO Changjiang, WANG Chunyang, XUE Hao, GAO Jian, LI Zhizhong, ZHUANG Weilin, QI Qiming. Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240180

基于抗剪老化的板式支座摩擦滑动性能试验研究

doi: 10.3969/j.issn.0258-2724.20240180
基金项目: 国家重点研发计划(2023YFB2604402);国家自然科学基金项目(51978581,51178395);四川省应用基础研究重点项目(2017JY0059)
详细信息
    作者简介:

    崔皓蒙(1998—),男,博士研究生,研究方向为桥梁工程抗震,E-mail:haomeng_cui@163.com

    通讯作者:

    邵长江(1970—),男,教授,博士,博士生导师,研究方向为桥梁工程抗震,E-mail:shao_chj@126.com

  • 中图分类号: U442.55

Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance

  • 摘要:

    为探明板式橡胶支座在老化情况下的摩擦滑动性能,基于支座规范中抗剪老化的有关规定,对支座开展热老化试验及拟静力试验. 首先,构造桥梁工程中真实的支座工作状态;其次,通过老化箱对支座样本进行热空气加速老化处理,并通过压剪机对支座进行水平循环拟静力加载;最后,对比分析支座试件在不同加载条件下的变形状态、滞回行为及相关力学响应. 研究结果表明:在加载过程中老化试件的剪切变形程度较大,滑动程度较小,滞回环较狭长;支座的滑动位移与面压、加载速率呈负相关;支座剪切刚度随等效剪切应变先减后增,老化试件的剪切刚度降低,等效刚度增大;在支座使用阶段平均面压10 MPa下,2类试件的摩擦系数差异不大,均低于规范建议值0.20;老化试件的摩擦系数普遍大于未老化试件,而耗能不充分;未老化试件存在性能变化点,整体力学行为为三折线趋势,而老化试件的摩擦滑动行为稳定,在0~250%等效剪切应变过程中未出现突变点.

     

  • 图 1  各加载阶段支座试件力-位移曲线

    Figure 1.  Force–displacement curves of bearing specimens at each loading stage

    图 2  2类支座试件的滑动响应随γESS的变化

    Figure 2.  Variation of sliding responses of two types of bearing specimens with γESS

    图 3  2类支座试件的刚度响应随γESS的变化

    Figure 3.  Variations of stiffnes responses of two types of bearing specimens with γESS

    图 4  2类支座试件的摩擦响应随γESS的变化

    Figure 4.  Variations of friction responses of two types of bearing specimens with γESS

    图 5  两类支座试件的耗能能力随γESS的变化

    Figure 5.  Variation of energy dissipation of two types of bearing specimens with γESS

    图 6  2类支座试件的骨架曲线

    Figure 6.  Skeleton curves of two types of bearing specimens

    表  1  老化箱设备性能及技术参数

    Table  1.   Performance and technical parameters of aging chamber

    温度范围/℃ 温度均匀度/℃ 温度偏差/℃ 气体流量/
    (L·min−1
    −55~160 [−2,2] [−2,2] 20~60
    下载: 导出CSV

    表  2  压剪机设备性能及技术参数

    Table  2.   Performance and technical parameters of compression-shear machine

    竖向最大静
    态荷载/GN
    横向最大动
    态荷载/GN
    横向动态频
    率范围/Hz
    横向最大
    位移/mm
    20 2 1 ±600
    下载: 导出CSV

    表  3  试验工况

    Table  3.   Test conditions

    工况系列 工况编号 支座试件 面压 σ/MPa 加载速率v/(mm·s−1
    G G-σ-v 未老化 4、6、8、10 1、2、5、10
    A A-σ-v 老化 4、6、8、10 1、2、5、10
    下载: 导出CSV

    表  4  支座试件变形阶段及变形状态

    Table  4.   Deformation stage and deformation status of bearing specimens

    工况系列 支座试件 纯剪切变形 初始滑动 显著滑动 稳定滑动
    G 未老化
    (0<γESS≤50%) (50%<γESS≤100%) (100%<γESS≤200%) (200%<γESS≤250%)
    A 老化
    (0<γESS≤75%) (75%<γESS≤150%) (150%<γESS≤200%) (200%<γESS≤250%)
    下载: 导出CSV

    表  5  支座试件各变形阶段的位移响应

    Table  5.   Displacement response of bearing specimens at each deformation stage mm

    变形阶段 剪切变形量 摩擦滑动位移
    未老化试件 老化试件 未老化试件 老化试件
    纯剪切变形 25 38 0 0
    初始滑动 45 73 5 2
    显著滑动 78 89 22 11
    稳定滑动 84 110 26 15
    下载: 导出CSV

    表  6  两类支座试件的摩擦条件α

    Table  6.   Friction condition α of two types of bearing specimens

    工况 老化试件 未老化试件
    γESS=100% γESS=150% γESS=200% γESS=250% γESS=100% γESS=150% γESS=200% γESS=250%
    A-4-1 0.240 0.297 0.325 0.260 0.158 0.210 0.226 0.183
    A-4-2 0.201 0.258 0.311 0.286 0.154 0.229 0.268 0.211
    A-4-5 0.162 0.218 0.297 0.312 0.145 0.224 0.309 0.240
    A-4-10 0.140 0.206 0.270 0.333 0.147 0.217 0.312 0.260
    A-6-1 0.097 0.141 0.184 0.182 0.093 0.133 0.145 0.127
    A-6-2 0.093 0.137 0.193 0.195 0.092 0.134 0.145 0.120
    A-6-5 0.090 0.133 0.202 0.208 0.093 0.131 0.154 0.111
    A-6-10 0.095 0.137 0.202 0.232 0.090 0.134 0.165 0.118
    A-8-1 0.072 0.108 0.136 0.135 0.067 0.090 0.092 0.079
    A-8-2 0.069 0.103 0.144 0.147 0.071 0.103 0.108 0.088
    A-8-5 0.066 0.098 0.152 0.159 0.064 0.102 0.134 0.097
    A-8-10 0.063 0.096 0.146 0.170 0.068 0.101 0.134 0.099
    A-10-1 0.064 0.094 0.134 0.128 0.072 0.099 0.117 0.111
    A-10-2 0.062 0.090 0.129 0.143 0.057 0.082 0.114 0.117
    A-10-5 0.059 0.086 0.125 0.158 0.060 0.084 0.119 0.130
    A-10-10 0.053 0.079 0.116 0.167 0.054 0.079 0.113 0.138
    下载: 导出CSV
  • [1] 徐略勤,王龙,李建中,等. 在役桥梁挡块基于保险丝理念的改造方法[J]. 西南交通大学学报,2020,55(1): 118-125,143. doi: 10.3969/j.issn.0258-2724.20180425

    XU Lueqin, WANG Long, LI Jianzhong, et al. Reconstruction method of shear keys on existing bridges based on structural fuse concept[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 118-125,143. doi: 10.3969/j.issn.0258-2724.20180425
    [2] XIANG N L, LI J Z. Seismic performance of highway bridges with different transverse unseating-prevention devices[J]. Journal of Bridge Engineering, 2016, 21(9): 04016045.1-04016045.16.
    [3] 庄卫林,刘振宇,蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报,2009,28(7):1377-1387.

    ZHUANG Weilin,LIU Zhenyu,JIANG Jinsong. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7):1377-1387.
    [4] 李建中,汤虎. 中小跨径板式橡胶支座梁桥横向抗震设计研究[J]. 土木工程学报,2016,49(11): 69-78.

    LI Jianzhong, TANG Hu. Study on transverse seismic design of small and medium span bridges with elastomeric bearing pads[J]. China Civil Engineering Journal, 2016, 49(11): 69-78.
    [5] 王克海,韦韩,李茜,等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报,2012,45(9): 115-121.

    WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans[J]. China Civil Engineering Journal, 2012, 45(9): 115-121.
    [6] 陈力波,黄才贵,黄勇冰,等. 公路规则梁桥地震易损性模型及简化计算方法[J]. 西南交通大学学报,2018,53(1): 146-155. doi: 10.3969/j.issn.0258-2724.2018.01.018

    CHEN Libo, HUANG Caigui, HUANG Yongbing, et al. Seismic vulnerabilitu models and simplified calculation method for regular highway girder bridges[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 146-155. doi: 10.3969/j.issn.0258-2724.2018.01.018
    [7] 中华人民共和国交通运输部. 公路桥梁抗震设计规范:JTG/T 2231-01—2020[S]. 北京:人民交通出版社,2020.
    [8] 中华人民共和国交通运输部. 公路桥梁板式橡胶支座:JT/T 4—2019[S]. 北京:人民交通出版社,2019.
    [9] XIANG N L, LI J Z. Experimental and numerical study on seismic sliding mechanism of laminated-rubber bearings[J]. Engineering Structures, 2017, 141: 159-174. doi: 10.1016/j.engstruct.2017.03.032
    [10] 李冲,王克海,惠迎新,等. 考虑摩擦滑移的板式橡胶支座连续梁桥地震反应分析[J]. 中国公路学报,2016,29(3): 73-81. doi: 10.3969/j.issn.1001-7372.2016.03.010

    LI Chong, WANG Kehai, HUI Yingxin, et al. Seismic response of continuous girder bridge with laminated rubber bearing considering friction sliding[J]. China Journal of Highway and Transport, 2016, 29(3): 73-81. doi: 10.3969/j.issn.1001-7372.2016.03.010
    [11] LI Y, WU Q Q. Experimental study on friction sliding performance of rubber bearings in bridges[J]. Advances in Materials Science and Engineering, 2017, 2017:5845149.1-5845149.8.
    [12] LIU K, CHANG K, LU C, et al. Seismic performance of skew bridge with friction type rubber bearings[C]// 14th World Conference on Earthquake Engineering. Beijing: WCEE, 2008: 1-8.
    [13] 王克海,吴刚,张盼盼. 板式橡胶支座摩擦滑移性能试验研究[J]. 振动与冲击,2020,39(19): 1-6.

    WANG Kehai, WU Gang, ZHANG Panpan. Tests for friction sliding performance of plate rubber bearing[J]. Journal of Vibration and Shock, 2020, 39(19): 1-6.
    [14] WU G, WANG K H, ZHANG P P, et al. Effect of mechanical degradation of laminated elastomeric bearings and shear keys upon seismic behaviors of small-to-medium-span highway bridges in transverse direction[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(1): 205-220. doi: 10.1007/s11803-018-0435-z
    [15] WU G, WANG K H, LU G Y, et al. An experimental investigation of unbonded laminated elastomeric bearings and the seismic evaluations of highway bridges with tested bearing components[J]. Shock and Vibration, 2018, 2018(1): 8439321.1-8439321.18.
    [16] MA Y H, LI Y M, ZHAO G F, et al. Experimental research on the time-varying law of performance for natural rubber laminated bearings subjected to seawater dry-wet cycles[J]. Engineering Structures, 2019, 195: 159-171. doi: 10.1016/j.engstruct.2019.05.101
    [17] RUSSO G, PAULETTA M. Sliding instability of fiber-reinforced elastomeric isolators in unbonded applications[J]. Engineering Structures, 2013, 48: 70-80. doi: 10.1016/j.engstruct.2012.08.031
    [18] LI Y M, MA Y H, ZHAO G F, et al. Experimental study on the effect of alternating ageing and sea corrosion on laminated natural rubber bearing’s tension-shear property[J]. Journal of Rubber Research, 2020, 23(3): 151-161. doi: 10.1007/s42464-020-00045-9
    [19] 黄海新,李炫钢,李帆,等. 老化与偏心受压下板式橡胶支座抗震性能拟静力试验研究[J]. 土木与环境工程学报(中英文),2021,43(3): 51-58. doi: 10.11835/j.issn.2096-6717.2020.069

    HUANG Haixin, LI Xuangang, LI Fan, et al. Pseudo static test of seismic performance of rubber bearing plate under aging and eccentric compression[J]. Journal of Civil and Environmental Engineering, 2021, 43(3): 51-58. doi: 10.11835/j.issn.2096-6717.2020.069
    [20] 关宏摘. 板式橡胶支座力学性能退化模型及损伤识别[D]. 开封:河南大学,2022.
    [21] FUKAHORI Y, GABRIEL P, LIANG H, et al. A new generalized philosophy and theory for rubber friction and wear[J]. Wear, 2020, 446/447: 203166.1-203166.18.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  39
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 录用日期:  2025-03-19
  • 修回日期:  2024-07-02
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回