• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高承载力密度磁轴承优化设计

姜豪 苏振中 姜亚鹏

姜豪, 苏振中, 姜亚鹏. 高承载力密度磁轴承优化设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240553
引用本文: 姜豪, 苏振中, 姜亚鹏. 高承载力密度磁轴承优化设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240553
JIANG Hao, SU Zhenzhong, JIANG Yapeng. Optimized Design of High-Load Capacity Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240553
Citation: JIANG Hao, SU Zhenzhong, JIANG Yapeng. Optimized Design of High-Load Capacity Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240553

高承载力密度磁轴承优化设计

doi: 10.3969/j.issn.0258-2724.20240553
基金项目: 国家自然科学基金项目(52477046,52107063);湖北省自然科学基金项目(2024AFB340)
详细信息
    作者简介:

    姜豪(1995—),男,讲师,博士,研究方向为磁悬浮电机技术,E-mail:jianghao23@nue.edu.cn

    通讯作者:

    苏振中(1989—),男,教授,博士生导师,研究方向为集成化发电技术、磁悬浮技术等,E-mail:suayst@nue.edu.cn

  • 中图分类号: TH133.3

Optimized Design of High-Load Capacity Magnetic Bearings

  • 摘要:

    高速重载是磁轴承的重要应用趋势,针对传统磁轴承承载力密度低、电磁设计与控制器设计过程脱离等问题,本文提出通过增大磁轴承工作磁密到材料饱和区,用以提高磁轴承的承载力密度;在此基础上,考虑磁轴承饱和与强机电耦合特性,开展高承载力密度磁轴承结构-控制一体化设计. 首先,考虑饱和、转子偏心等因素,建立高承载力密度磁轴承的非线性磁路模型;其次,根据动力学模型构建磁轴承结构设计与控制系统的耦合关系,同时考虑磁轴承的承载力、功放电压和系统稳定性等约束,以最小轴向长度和最大力变化率作为优化目标,建立高承载力密度磁轴承的多目标优化模型,利用NSGA-II算法求解以得出高承载力密度磁轴承的设计方案;最后,利用有限元和实验验证设计方案的可行性. 结果表明:相较于传统磁轴承,高承载力密度磁轴承的承载力密度提高了21%,实测样机支承刚度与非线性磁路计算刚度的误差在4.6%以内,能够实现高转速下的稳定运行.

     

  • 图 1  传统磁轴承与高承载力密度磁轴承磁密工作区

    Figure 1.  Working area of magnetic flux density of traditional and high-load capacity MBs

    图 2  十六极径向磁轴承拓扑结构和极性分布

    Figure 2.  Topology and polarity distribution of 16-pole radial MBs

    图 3  磁轴承的磁网络模型

    Figure 3.  Magnetic network model of MBs

    图 4  硅钢片35WW270的B-H曲线

    Figure 4.  B-H curve of silicon steel sheet (35WW270)

    图 5  基于磁网络法的磁轴承解析计算方法

    Figure 5.  Analytical calculation method for MBs based on magnetic network method

    图 6  等效阻感电路

    Figure 6.  Equivalent resistor-inductor circuit

    图 7  磁轴承-刚性转子系统模型

    Figure 7.  MB–rigid rotor system model

    图 8  高承载力密度磁轴承优化设计流程

    Figure 8.  Optimal design procedure of high-load capacity MBs

    图 9  Pareto前沿

    Figure 9.  Pareto front

    图 10  高承载力密度磁轴承有限元模型

    Figure 10.  Finite element model of high-load capacity MBs

    图 11  气隙磁密和分布云图

    Figure 11.  Air gap magnetic flux density and distribution cloud map

    图 12  不同控制电流的电磁力及误差

    Figure 12.  Electromagnetic forces and errors under different control currents

    图 13  不同转速下的系统根轨迹

    Figure 13.  System root locus at different rotational speeds

    图 14  实验平台

    Figure 14.  Experimental platform

    图 15  控制电流和偏心位移的关系(非伸端)

    Figure 15.  Relationship between control current and eccentric displacement (non-extended end)

    图 16  转子偏心位移和轴心轨迹(6 000 rpm)

    Figure 16.  Rotor eccentric displacement and shaft center trajectory (6 000 rpm)

    表  1  高承载力密度磁轴承的主要输入参数

    Table  1.   Key input parameters for high-load capacity MBs

    符号 参数 单位
    m 转子重量 490 kg
    Bsat 深度饱和磁密点 1.8 T
    g0 气隙长度 0.4 mm
    da × db 线径宽度和高度 2.5 × 1.4 mm
    Rs1,req 最大定子外径 330 mm
    Rr1,req 最小转子内径 120 mm
    Ω 转子角速度 6000 × 2π rad/s
    最大线速度 187 m/s
    下载: 导出CSV

    表  2  Pareto最优解集

    Table  2.   Pareto optimal solution set

    最优解
    序列
    磁极
    宽度/
    mm
    转子
    外径/
    mm
    轴向
    长度/
    mm
    磁极
    高度/
    mm
    比例
    系数/
    (A•mm−1
    微分
    系数/
    (A•s•mm−1
    1 22.0 125.0 77.6 18.1 46.52 0.047
    2 22.8 124.1 60.5 18.6 47.98 0.046
    3 22.0 125.0 69.1 18.1 46.52 0.047
    4 22.0 125.0 70.4 18.1 46.51 0.047
    5 22.0 125.0 71.4 18.1 46.52 0.047
    6 22.0 125.0 73.7 18.1 46.51 0.047
    7 22.9 123.5 59.7 18.7 48.19 0.046
    8 23.4 121.5 59.3 20.7 48.57 0.045
    9 23.5 119.0 62.2 22.0 46.58 0.047
    10 22.9 124.0 59.7 18.7 48.17 0.046
    下载: 导出CSV

    Table  3.   Key design scheme parameters of high-load capacity MBs and traditional MBs

    参数高承载力密度磁轴承传统磁轴承单位
    实际最大承载力71457145N
    偏置磁密1.00.8T
    气隙0.40.4mm
    定子外径165.0165.0mm
    转子内径60.060.0mm
    轴向长度62.075.0mm
    最大力回转率9.62 × 1066.86 × 106N/s
    承载力密度0.4840.40MPa
    下载: 导出CSV

    表  4  刚度及其误差

    Table  4.   Stiffness and errors

    参数 理论计算 实验辨识 相对误差(%)
    电流刚度/(N•A−1 849 847.1 −0.22
    位移刚度/(N•m−1 −3.11 × 107 −2.97 × 107 −4.52
    下载: 导出CSV
  • [1] 张维煜,张林东,于焰均. 磁悬浮支承-飞轮系统稳定运行关键技术综述[J]. 西南交通大学学报,2022,57(3): 627-639. doi: 10.3969/j.issn.0258-2724.20210745

    ZHANG Weiyu, ZHANG Lindong, YU Yanjun. Review on key technologies of stable operation for magnetic suspension support-flywheel system[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 627-639. doi: 10.3969/j.issn.0258-2724.20210745
    [2] 周扬,周瑾,张越,等. 基于RBF近似模型的磁悬浮轴承结构优化设计[J]. 西南交通大学学报,2022,57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766

    ZHOU Yang, ZHOU Jin, ZHANG Yue, et al. Optimum structural design of active magnetic bearing based on RBF approximation model[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 682-692. doi: 10.3969/j.issn.0258-2724.20210766
    [3] 胡余生,李立毅,郭伟林,等. 基于不等磁路面积设计方法的磁轴承刚度[J]. 西南交通大学学报,2022,57(3): 648-656.

    HU Yusheng, LI Liyi, GUO Weilin, et al. Support stiffness of magnetic bearing based on unequal magnetic circuit area design method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656.
    [4] 金超武,辛宇,周扬,等. 高温磁轴承-转子系统建模与动力学分析[J]. 西南交通大学学报,2024,59(4): 746-754.

    JIN Chaowu, XIN Yu, ZHOU Yang, et al. Modeling and dynamics analysis of high-temperature magnetic bearing-rotor system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754.
    [5] 王东,姜豪,苏振中,等. 船用磁悬浮轴承关键技术与发展综述[J]. 中国电机工程学报,2020,40(20): 6704-6715.

    WANG Dong, JIANG Hao, SU Zhenzhong, et al. A review on the key technologies and development of marine magnetic bearings[J]. Proceedings of the CSEE, 2020, 40(20): 6704-6715.
    [6] 禹春敏,邓智泉,梅磊,等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报,2021,36(6): 1219-1228.

    YU Chunmin, DENG Zhiquan, MEI Lei, et al. Research of new hybrid axial-radial magnetic bearing based on accurate magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228.
    [7] 赵旭升,邓智泉,汪波. 异极性永磁偏置径向磁轴承的参数设计与实现[J]. 电工技术学报,2012,27(7): 131-138,159.

    ZHAO Xusheng, DENG Zhiquan, WANG Bo. Parameter design and realization of permanent magnet biased heterploar radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 131-138,159.
    [8] 钟志贤,蔡忠侯,祁雁英,等. 新型径向混合磁轴承的解耦设计与分析[J]. 中国电机工程学报,2022,42(04): 1596-1606.

    ZHONG Zhixian, CAI Zhonghou, QI Yanying, et al. Decoupling design and analysis of a new radial Hybrid magnetic bearing[J]. Proceedings of the CSEE, 2022, 42(04): 1596-1606.
    [9] LIU X X, DONG J Y, DU Y, et al. Design and static performance analysis of a novel axial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
    [10] 金俊杰,王岩峰,徐程程,等. 人工肾脏泵用磁悬浮轴承设计与磁力特性分析[J]. 西南交通大学学报,2024,59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090

    JIN Junjie, WANG Yanfeng, XU Chengcheng, et al. Design and magnetic force characteristic analysis of magnetic levitation bearing for artificial kidney pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [11] SMIRNOV A, UZHEGOV N, SILLANPAA T, et al. High-speed electrical machine with active magnetic bearing system optimization[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9876-9885. doi: 10.1109/TIE.2017.2716875
    [12] PINCKNEY F D, KEESEE J M. Magnetic bearing design and control optimization for a four-stage centrifugal compressor[J]. Tribology Transactions, 1992, 35(3): 561-565. doi: 10.1080/10402009208982157
    [13] CHEN H C, CHANG S H. Genetic algorithms based optimization design of a PID controller for an active magnetic bearing[J]. IJCSNS International Journal of Computer Science and Network Security, 2006, 6(12): 95-99.
    [14] ZHONG Y, WU L, HUANG X, et al. An improved magnetic circuit model of a 3-DOF magnetic bearing considering leakage and cross coupling effects[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-6.
    [15] SHAKIBAPOUR F, RAHIDEH A, MARDANEH M. 2D analytical model for heteropolar active magnetic bearings considering eccentricity[J]. IET Electric Power Applications, 2018, 12(5): 614-626. doi: 10.1049/iet-epa.2017.0669
    [16] 王大朋,王凤翔. 利用场路结合方法分析磁轴承悬浮力[J]. 电机与控制学报,2011,15(11): 8-13.

    WANG Dapeng, WANG Fengxiang. Levitation force analysis of magnetic bearing by circuit-field combination method[J]. Electric Machines and Control, 2011, 15(11): 8-13.
    [17] JIANG H, SU Z Z, WANG D. Analytical calculation of active magnetic bearing based on distributed magnetic circuit method[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 1841-1851. doi: 10.1109/TEC.2020.3040975
    [18] 叶品州,李红伟,于文涛,等. 考虑材料非线性及涡流影响的径向电磁轴承等效磁路建模[J]. 电工技术学报,2020,35(9): 1858-1867.

    YE Pinzhou, LI Hongwei, YU Wentao, et al. Equivalent magnetic circuit modeling of radial active magnetic bearing considering material nonlinearity and eddy current effects[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1858-1867.
    [19] 刘程子,邓智泉,梅磊,等. 基于漏磁与磁阻系数迭代的三自由度混合型磁悬浮轴承的设计[J]. 航空动力学报,2013,28(3): 603-612.

    LIU Chengzi, DENG Zhiquan, MEI Lei, et al. Design of 3-DOF hybrid magnetic bearing based on leakage coefficient and magnetoresistance coefficient iterative method[J]. Journal of Aerospace Power, 2013, 28(3): 603-612.
    [20] LE Y, WANG K. Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects[J]. ASME Transactions on Mechatronics, 2016, 21(4): 2061-2072. doi: 10.1109/TMECH.2016.2569822
    [21] ZHU R Z, XU W, YE C Y, et al. Design optimization of a novel heteropolar radial hybrid magnetic bearing using magnetic circuit model[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-5. doi: 10.1109/TMAG.2018.2800462
    [22] JIN Z J, SUN X D, CAI Y F, et al. Comprehensive sensitivity and cross-factor variance analysis-based multi-objective design optimization of a 3-DOF hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2021, 57(2): 1-4.
    [23] GERHARD S, ERIC H M. Magnetic bearing: theory, design, and application to rotating machinery[M]. Berlin Heidelberg: Springer-Verlag, 2009.
    [24] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [25] JIANG H, SU Z Z, WANG D, et al. Multiparameter identification for active magnetic bearing with uncertainties based on a coupled nonlinear model[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10431-10441. doi: 10.1109/TIE.2022.3222595
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  20
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2025-05-09
  • 网络出版日期:  2025-05-19

目录

    /

    返回文章
    返回