Processing math: 21%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑相移补偿的磁浮列车长定子高频信号注入无传感控制方法

张雯柏 林国斌 康劲松 赵元哲 廖志明

张雯柏, 林国斌, 康劲松, 赵元哲, 廖志明. 考虑相移补偿的磁浮列车长定子高频信号注入无传感控制方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240310
引用本文: 张雯柏, 林国斌, 康劲松, 赵元哲, 廖志明. 考虑相移补偿的磁浮列车长定子高频信号注入无传感控制方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240310
ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Signal Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240310
Citation: ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Signal Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240310

考虑相移补偿的磁浮列车长定子高频信号注入无传感控制方法

doi: 10.3969/j.issn.0258-2724.20240310
基金项目: 国家自然科学基金项目(52202449,52232013);高速磁浮运载技术全国重点实验室开放基金(SKLM-SFCF-2023-010)
详细信息
    作者简介:

    张雯柏(1990—),男,博士研究生,研究方向为高速磁浮磁驱控制系统,E-mail:zhangwenbai@tongji.edu.cn

    通讯作者:

    赵元哲(1987—),男,讲师,博士,研究方向为高速磁浮磁驱控制系统与电能质量分析,E-mail:yuanzhezhao@tongji.edu.cn

  • 中图分类号: TM359.4

Sensorless Control Method of High-Frequency Signal Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation

  • 摘要:

    为研究高频注入响应电角度相移对磁浮列车低速控制精度的影响,考虑控制延时与采样延时对角度偏差滞后的约束关系,提出一种无传感估计角度偏差最小化寻优的补偿方法. 首先,建立高速磁浮长定子同步电机零低速高频方波信号注入模型,利用估计-实际-延时坐标系变换理论,构建高频响应电流模型;其次,通过分析大功率电传动系统中系统延时对角度偏差的影响,重构含估计角度相移偏差的高频响应电流模型;然后,设计离散化的估计角度偏差目标函数,提出采用考虑梯度变化的二分法在线计算系统延时与角度偏差;最后,通过磁浮电机低速试验平台验证算法. 试验结果表明:本文提出的考虑相移滞后补偿方法与未经补偿的无传感控制相比,当给定电流为20、21、22 A时,估计角度误差分别减小73.3%,70.4%和72.1%;当速度环给定速度为0.8、0.9、1 m/s时,估计角度误差分别减小67.9%、70.5%、75.5%,速度跟踪误差平均减小50%.

     

  • 高速磁浮列车速度快、安全舒适、维保成本低,可实现大城市之间和综合经济区之间的快速通勤[1]. 高速磁浮通过电磁力约束实现无接触运行,摆脱了传统轨道交通的弓网关系与轮轨关系,有潜力成为陆地交通系统中速度最快的运输方式[2-3].

    常导高速磁浮列车采用电励磁长定子直线同步电机(LSM)实现推力输出[3]. 磁浮列车高速时,采用基于反电动势的无传感器控制策略,实现电流与速度闭环控制[5];零速与低速时,采用齿槽检测与标志板结合的定位测速系统检测磁极相角(PRW)[1],此时动子磁链的变化率小,且反馈电流信噪比低,通过反电动势难以估计电角度信息;当零速与低速时定位测速传感器失效,列车丢失电角度无法实现电流与速度闭环. 因此,研究磁浮列车零速与低速无传感器(以下统称零低速无传感)控制方法具有一定的实用意义.

    传统的零低速无传感技术利用动子凸极性,通过增加外部激励信号跟踪动子位置,即脉冲宽度调制(PWM)激励法和高频信号注入法. 注入信号类型多样,有正弦信号、脉振信号以及随机信号(变频率、变幅值、变相位),按注入轴系主要有高频旋转电压和高频脉振电压注入[6]. 旋转电压法注入到αβ轴,通过提取高频响应电流信号负序分量,再采用跟踪观测器、同步轴系滤波器等方法解调[7],得到动子位置信息. 脉振电压法分为脉振正弦和脉振方波2类信号[8],信号从d轴注入,通过解调高频响应信号得到基波分量和高频分量,分别实现闭环控制和角度信息估算. 脉振正弦信号分离需要多个滤波器,应用受限于系统带宽;脉振方波注入频率可接近开关频率,且信号分离可以忽略滤波器的影响. 然而,面向高速磁浮与轨道交通等大功率电传动系统,传统高频注入方法往往忽略控制与采样电路延时问题,尤其是在低开关频率下[9],若不对延时引起的相移补偿[10-11],位置估计累积误差将导致闭环控制失步或错步等故障.

    针对上述基于延时的相移滞后问题,国内外学者展开了大量研究工作. 如:针对大功率电机驱动系统低采样、低开关频率导致的延时及交叉耦合增大和系统稳定性与动态性降低,采用复矢量设计电流控制器[12];考虑控制延时与PWM生成延时导致的比例积分(PI)控制器参数失配,通过重新设计参数区间,提升驱动系统的相位裕度和带宽[13];考虑开关管开关延时,采用在dq控制回路中增加前馈扰动观测器来实现补偿,提高位置估计精度[13,15]. 为补偿位置滞后,通过计算q轴电流误差来设计位置估计算法[16-17],通过欧拉预测计算q轴电压误差来估计开关管工作时间[18];为抑制控制延时对磁浮列车电流控制性能的影响,一种预测电流控制器被提出[19-20],为逆变器提供弱化延时影响的开关信号;为抑制低开关频率下控制延时对轨道交通列车无传感控制精度的影响,一种基于梯度下降法的高频注入延时补偿方法被提出[21]. 然而,针对磁浮列车零低速无传感控制,考虑延时导致的相移补偿研究较少.

    本文针对磁浮列车零低速高频信号注入无传感控制,忽略大功率驱动系统控制延时和采样电路延时的影响,导致高频响应电流电角度相位滞后与速度跟踪误差累积的问题,提出考虑相位滞后补偿的高频信号注入无传感器控制方法. 通过搭建短行程磁浮电机试验平台,验证所提控制方法的正确性.

    常导高速磁浮列车运行推力和悬浮力都与悬浮磁场相关,该磁场大小由悬浮间隙与励磁电流决定,悬浮电磁铁既是悬浮力输出来源,也是LSM的动子部分. LSM定子部分由长1 032 mm的定子模块与三相电枢波绕组构成;动子模块由10个整磁极和2个半磁极总长3 096 mm电磁铁构成,其中,头尾车厢每侧包含7.5个标准悬浮电磁铁模块,中间车厢为8个,如图1所示.

    图  1  常导高速磁浮直线长定子电机结构
    Figure  1.  Structure of EMS high-speed linear LSM

    列车零低速采用高频信号注入无传感器控制方式,高频电流响应信号中包含有动子位置信息,由于高频段的电流信号幅值较小,频率高,高频段的阻抗压降与速度反电势项可忽略不计,电压方程中仅考虑电流导数项,此时电机可简化为纯电感,电机高频数学模型可表示为

    [udhuqh]=[Ldh00Lqh]ddt[idhiqh], (1)

    式中:udhuqh分别为dq轴的高频电压分量,idhiqh分别为dq轴高频电流分量,LdhLqh分别为dq轴的高频电感分量,t为运行时间.

    高频电压信号注入在观测轴系,即deqe轴系,d、q为实际轴系,含延时相移. 区别于以往的高频电压注入角度估计方法,增加不含延时相移的实际轴系drqr与估计轴系derqer,用于补偿角度参考计算,如图2所示. 图中:αβ为静止轴系;θe为含延时的实际电角度;ˆθe为未补偿的估计电角度;θr为不含延时的实际电角度;ˆθer为补偿后的估计电角度;Δθ为补偿前θeˆθe误差;Δθrθrˆθe误差;φ为实际延时电角度;ˆφ为估计补偿延时电角度. Δφφˆφ误差,当Δφ=0时,补偿后的实际电角度等于电角度θr.

    图  2  考虑相移滞后影响的高频响应各坐标系
    Figure  2.  Coordinate system of high-frequency response considering effect of phase shift lag

    高频方波电压信号注入在deqe轴系,注入信号的表达式为

    uedh={Uh,t(T0,T0+Th/2],Uh,t(T0+Th/2,T0+Th], (2)
    ueqh=0, (3)

    式中:uedhueqh分别为观测轴系高频电压分量,Uh为注入的电压幅值,T0为周期的初始时刻,Th为高频方波电压周期.

    基于图2所示轴系关系,deqe轴系经Park变换可得到dq轴系电压方程,即式(1)左侧可写为

    [udhuqh]=[cosΔθsinΔθsinΔθcosΔθ][uedhueqh]. (4)

    考虑Clarke变换不需反馈电角度,因此,在αβ轴系下对高频电流信号中的位置信息进行解调角度信息,建立起dq轴系与αβ轴系电流方程的关系,具体可表示为

    [idhiqh]=[cosθesinθesinθecosθe][iαhiβh], (5)

    式中:idhiqh分别为dq轴的高频电流分量,iαhiβh分别为αβ轴的高频电流分量.

    将式(4)、(5)代入式(1),考虑到电流导数项远大于速度项与反电动势项,因此,仅保留导数项,转换为电流状态方程,得到

    \qquad\qquad\quad\begin{split} & \frac{{\text{d}}}{{{\text{d}}t}}\left[ \begin{gathered} {i_{\alpha {\text{h}}}} \\ {i_{\beta {\text{h}}}} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} {\cos\; {\theta _{\text{e}}}}&{ - \sin\; {\theta _{\text{e}}}} \\ {\sin\; {\theta _{\text{e}}}}&{\cos\; {\theta _{\text{e}}}} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} {{L_{d{\text{h}}}}}&0 \\ 0&{{L_{q{\text{h}}}}} \end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}} {\cos\; \Delta \theta }&{\sin \;\Delta \theta } \\ { - \sin\; \Delta \theta }&{\cos\; \Delta \theta } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {u_{{\text{dh}}}^{\text{e}}} \\ {u_{{\text{qh}}}^{\text{e}}} \end{array}} \right] \\ &\quad = \frac{{u_{{\text{dh}}}^{\text{e}}}}{{L_{{\text{avg\_h}}}^2 - L_{{\text{dif\_h}}}^2}}\left[ \begin{gathered} {L_{{\text{avg\_h}}}}\cos\; {{\hat \theta }_{\text{e}}} - {L_{{\text{dif\_h}}}}\cos ({\theta _{\text{e}}} + \Delta \theta ) \\ {L_{{\text{avg\_h}}}}\sin\; {{\hat \theta }_{\text{e}}} - {L_{{\text{dif\_h}}}}\sin ({\theta _{\text{e}}} + \Delta \theta ) \\ \end{gathered} \right] = \frac{{u_{{\text{dh}}}^{\text{e}}}}{{{L_{{\text{dh}}}}{L_{{\text{qh}}}}}} {\boldsymbol{\varLambda}} , \end{split} (6)

    式中: {\boldsymbol{\varLambda}} {\text{ = }}\left[ {\begin{array}{*{20}{c}} {\cos \;{\theta _{\mathrm{e}}}\cos \;\Delta \theta /{L_{{\text{dh}}}} + \sin\; {\theta _e}\sin\; \Delta \theta /{L_{q{\text{h}}}}} \\ {\sin \;{\theta _{\mathrm{e}}}\cos \;\Delta \theta /{L_{{\text{dh}}}} - \cos \;{\theta _e}\sin\; \Delta \theta /{L_{q{\text{h}}}}} \end{array}} \right] L_{{\text{avg\_h}}}^{} L_{{\text{dif\_h}}}^{} 分别为高频均值电感与高频偏差电感.

    对式(6)左右积分,得到

    \left[ \begin{gathered} {i_{\alpha {\text{h}}}} \\ {i_{\beta {\text{h}}}} \\ \end{gathered} \right] = \varLambda \int {u_{{\text{dh}}}^e{\mathrm{d}}t}. (7)

    根据傅里叶变换分解,注入高频方波信号为

    u_{{\text{dh}}}^{\text{e}}(t) = \frac{{4{V_{{\mathrm{in}}}}}}{{\text{π}} }\sum\limits_{k = 0}^\infty {\frac{{\sin [(2k + 1){\omega _{{\text{in}}}}t]}}{{2k + 1}}} \text{,} (8)

    式中: {\omega _{{\text{in}}}} 为注入频率; {V_{{\text{in}}}} 为注入高频方波信号幅值;k为傅里叶变换频率分量的索引.

    将(8)代入(7)可得

    \left[ \begin{gathered} {i_{\alpha {\text{h}}}} \\ {i_{\beta {\text{h}}}} \\ \end{gathered} \right] = {\boldsymbol{\varLambda}} \frac{{ - 4{V_{{\text{in}}}}}}{{{\text{π}} {\omega _{{\text{in}}}}}}\sum\limits_{k = 0}^\infty {\frac{{\cos (2k + 1){\omega _{{\text{in}}}}t}}{{2k + 1}}} . (9)

    从式(9)可以看出,向电流调节器输出的d轴注入高频电压,在αβ轴高频响应电流中含有动子位置信息,通过解调αβ轴响应电流的估计误差,经锁相环可实现角度位置估计. 由于Λ中含延时的电角度 {\theta _{\text{e}}} \Delta \theta 会导致估计角度 {\hat \theta _{\text{e}}} 相移,因此,需要对估计角度补偿.

    在高速磁浮交通大功率电传动控制系统中,受到开关损耗与散热的限制,高频电压注入信号的频率受到了限制,同时位置控制系统的固有延时,严重影响着位置估计精度与动态性能. 高频注入无传感控制系统中的延时问题分为控制延时与采样电路延时,控制延时会导致PWM输出电压相移与幅值误差;采样电路延时会引起注入电压偏差,导致高频响应电流劣化与相移误差,且电流控制回路动态性能下降. 因此,需要对由延时引起的估计角度偏差补偿,保证无位置传感器控制系统的动态性能.

    当采用单载波周期双采样实现PWM输出调制,前半周期和后半周期的脉冲分别由2个采样值计算得出. 首先,控制系统在时刻n采样相电流,通过Clarke变换转至αβ轴;其次,经信号解调与误差锁相得到电角度,结合Park将电流转换至dq轴;最后,经dq轴电流调节器与Clarke逆变换得到静止坐标系下的αβ轴参考电压,计算出新的PWM调制信号用于时刻n+1的调制输出,此过程存在一个采样周期Ts/2的控制延时. 考虑PWM调制占空比信号至逆变器开关管输出延时约半个采样周期Ts/4,则总延时约3Ts/4时长.

    图3所示,根据时刻tn的高频响应电流估计出电角度θe,由于控制延时,在时刻tn + td,将θe反馈闭环计算的PWM调制输出,此时动子已移动至θr,高频响应电流和估计的动子位置都有滞后相移,根据式(8)保留 {\omega _{{\text{in}}}} ,补偿一般取基波分量,即k=0,考虑延时的高频响应电流为

    图  3  考虑延时的相移滞后示意
    Figure  3.  Phase shift lag considering delay
    \begin{split} & \left[ \begin{gathered} {i_{\alpha {\text{h\_d}}}} \\ {i_{\beta {\text{h\_d}}}} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} {\dfrac{{\cos \;{\theta _{\mathrm{e}}}\cos \;\Delta \theta }}{{{\omega _{{\mathrm{in}}}}{L_{{d\text{h}}}}}} + \dfrac{{\sin\; {\theta _{\mathrm{e}}}\sin \;\Delta \theta }}{{{\omega _{{\mathrm{in}}}}{L_{{q\text{h}}}}}}} \\ {\dfrac{{\sin \;{\theta _{\mathrm{e}}}\cos\; \Delta \theta }}{{{\omega _{{\mathrm{in}}}}{L_{{d\text{h}}}}}} - \dfrac{{\cos\; {\theta _{\mathrm{e}}}\sin \;\Delta \theta }}{{{\omega _{{\mathrm{in}}}}{L_{{q\text{h}}}}}}} \end{array}} \right]\times \\ &\quad\frac{{4{V_{{\mathrm{in}}}}}}{{\text{π}} } \sin ({\omega _{{\mathrm{in}}}}t - \varphi ), \end{split} (10)

    式中: \varphi = {\omega _{\mathrm{e}}}{t_{\mathrm{d}}} .

    考虑相位补偿的高频方波注入无传感控制框图如图4所示. 图中: {v_{{\mathrm{ref}}}} 为给定的控制速度,即设置的目标速度; {\hat v_{\mathrm{e}}} 为观测速度, {\hat v_{\mathrm{e}}}={\hat \omega _{\mathrm{e}}} t {\hat \omega _{\mathrm{e}}} 为观测角频率,由估计电角度 {\hat \theta _{\text{e}}} 求导得到; i_{\text{q}}^* 为经过速度控制器ASR (automatic speed regulator)计算后得到的q轴控制电流; i_{\mathrm{d}}^* d轴控制电流,是一个常值0; u_{\mathrm{d}}^* u_{\text{q}}^* 分别为经过电流控制器ACR (automatic current regulator)计算后,得到的d、q轴控制电压; u_\alpha ^* u_\beta ^* u_{\mathrm{d}}^* u_{\text{q}}^* 经过Clarke反变换计算得到的α、β轴调制控制电压. Clarke反变换需要用到角度 {\hat \theta _{{\text{er}}}} {i_{\text{a}}} {i_{\text{b}}} {i_{\text{c}}} 为ABC三相电流; {i_{\alpha \beta }} αβ轴反馈电流,包含 {i_\alpha } {i_\beta } {i_{{{dq}}}} dq轴反馈电流,包含 {i_{{d}}} {i_{{q}}} {i_{\alpha \beta }} {i_{{{dq}}}} 中都包含基频部分与高频部分; {i_{\alpha \beta {\text{h}}}} αβ轴高频部分,包含 {i_{\alpha {\text{h}}}} {i_{\beta {\text{h}}}} ,用于角度估计计算; {i_{{dq\text{f}}}} 表示dq轴基频部分,包括 i_{{d\text{f}}} i_{{q\text{f}}} ,为d、q轴基波电流,用于电流闭环控制. 电角度估算过程主要包括高频信号解调、包络处理与锁相、相移计算、相移补偿等4个阶段,其中,相移计算与相移补偿分别实现了相移角的计算与补偿实施.

    图  4  考虑相位补偿的高频方波注入无传感控制框图
    Figure  4.  Sensorless control for HFSI considering phase shift lag compensation

    由式(10)可以看出,若能确定延时时间td,通过角度计算可消除延时引起的相移滞后. 为消除估计角度变量,保留滞后角度,对式(10)变换处理分析如下:1) 式(10)包含 {\theta _{\mathrm{e}}} \varphi t {i_{\alpha {\text{h}}}} {i_{\beta {\text{h}}}} 等变量;2) {\omega _{{\mathrm{in}}}} {V_{{\mathrm{in}}}} 为高频注入信号, \Delta \theta 经锁相环输出确定,即 {\hat \theta _{\mathrm{e}}} 确定;3) 若t已知,对 \varphi 估计补偿,则应先建立只含 \varphi 的成本函数,再最小化误差目标函数,最终得到延时td. 变换处理: {i_{{\mathrm{td}}}} 为电流成本函数,通过左右两侧乘以含观测电角度 {\hat \theta _{\mathrm{e}}} 的矩阵,实现 {\theta _{\mathrm{e}}} 消除,得到 {i_{{\mathrm{td}}}} 幅值与2 \Delta \theta 相关, {i_{{\mathrm{td}}}} 相移与 \varphi 相关,即

    \begin{split} & {i_{{\mathrm{td}}}} = \left[ {\begin{array}{*{20}{c}} {\sin \;{{\hat \theta }_{\text{e}}}}&{ - \cos\; {{\hat \theta }_{\text{e}}}} \end{array}} \right]\left[ \begin{gathered} {i_{\alpha {\text{h}}}} \\ {i_{\beta {\text{h}}}} \\ \end{gathered} \right]= \\ &\quad \left(\frac{{ - \cos\; \Delta \theta \sin\; \Delta \theta }}{{{\omega _{{\text{in}}}}{L_{{\text{dh}}}}}} + \frac{{\sin\; \Delta \theta \cos\; \Delta \theta }}{{{\omega _{{\text{in}}}}{L_{{\text{qh}}}}}}\right)\times \\ &\quad \frac{{4{V_{{\text{in}}}}}}{{\text{π}} } \sin ({\omega _{{\text{in}}}}t - \varphi ). \end{split} (11)

    {i_{{\text{td}}}} 的估计值为

    {\hat i_{{\mathrm{td}}}} = \frac{{({L_{{\text{dh}}}} - {L_{{\text{qh}}}})/2}}{{{\omega _{{\mathrm{in}}}}{L_{{\text{dh}}}}{L_{{\text{qh}}}}}}\frac{{4{V_{{\mathrm{in}}}}}}{{\text{π}} }\sin 2(\Delta {\theta _{{\mathrm{cmp}}}}) \sin ({\omega _{{\mathrm{in}}}}t - \hat \varphi ), (12)

    式中: \Delta \varphi \varphi \hat \varphi 误差,当 \Delta \varphi = 0时,补偿后的实际电角度等于 {\theta _{\text{r}}} \Delta {\theta _{{\text{cmp}}}} 为补偿后角度误差,实际角度( {\theta _{\text{e}}} + \hat \varphi )与估计角度 {\hat \theta _{\text{e}}} 误差,即 \Delta \theta + \hat \varphi .

    根据延时误差机理,不考虑延时, \Delta {\theta _{}}{\text{ = }}{\theta _{\text{e}}} - {\hat \theta _{\text{e}}} {\theta _{\text{e}}} 等于 {\theta _{\text{r}}} - \varphi ;考虑延时有

    \Delta {\theta _{\text{r}}}{\text{ = }}{\theta _{\text{r}}} - {\hat \theta _{\text{e}}} = {\theta _{\text{e}}} + \varphi - {\hat \theta _{\text{e}}} = \Delta \theta + \varphi. (13)

    为使 \Delta {\theta _{{\text{cmp}}}} 逼近 \Delta {\theta _{\text{r}}} ,考虑延时,补偿后角度误差 \Delta {\theta _{{\text{cmp}}}} = \Delta {\theta _{}} + \hat \varphi . 因此, {\hat i_{{\text{td}}}} 表达式为

    {\hat i_{{\text{td}}}} = \frac{{({L_{d{\text{h}}}} - {L_{q{\text{h}}}})/2}}{{{\omega _{{\text{in}}}}{L_{d{\text{h}}}}{L_{q{\text{h}}}}}} \sin [2(\Delta \theta + \hat \varphi )] \frac{{4{V_{{\text{in}}}}}}{{\text{π}}} \sin ({\omega _{{\text{in}}}}t - \hat \varphi ). (14)

    电流误差为

    \begin{split} & \Delta {i_{{\text{td}}}} = {i_{{\text{td}}}} - {\hat i_{{\text{td}}}}{\text{ = }}{i_{{\text{td}}}}- \frac{{({L_{d{\text{h}}}} - {L_{q{\text{h}}}})/2}}{{{\omega _{{\text{in}}}}{L_{d{\text{h}}}}{L_{q{\text{h}}}}}} \times \\ &\quad \sin [2(\Delta \theta + \hat \varphi )] \frac{{4{V_{{\text{in}}}}}}{{\text{π}} } \sin ({\omega _{{\text{in}}}}t - \hat \varphi ) . \end{split} (15)

    式(15)对时刻n进行离散化处理得

    \begin{split} & \Delta {i_{{\mathrm{td}}}}[n]{\text{ = }}{i_{{\text{td}}}}[n] -\frac{{({L_{d{\text{h}}}} - {L_{q{\text{h}}}})/2}}{{{\omega _{{\text{in}}}}{L_{d{\text{h}}}}{L_{q{\text{h}}}}}}\times \\ &\quad \sin [2(\Delta \theta + \hat \varphi )] \frac{{4{V_{{\text{in}}}}}}{{\text{π}} } \sin [n{\omega _{{\text{in}}}}{T_{\text{s}}} - {\omega _{{\text{in}}}}{t_{\text{c}}}(n)] , \end{split} (16)

    式中:tc(n)为待求解的补偿时间.

    由式(15)误差函数,设计目标函数为

    L(n,{t_{\text{c}}}(n)) = \frac{1}{2}\Delta i_{{\text{td}}}^2. (17)

    提出的二分法延时计算结构如图5. 图中,tmid为二分法中间值,{\hat \theta _{{\mathrm{cmp}}}} 为延时补偿后的角度观测值.

    图  5  考虑梯度变化的二分法延时计算结构
    Figure  5.  Bisection delay computational structure considering gradient change

    准确估计td等于找到使L(·)值最小的tc值,二分法被引入解决最小值问题,是一种高效的逐次逼近算法,这里将tc(n)当作索引,将 L(n,{t_{\text{c}}}(n)) 当作评价指标,即索引对应的数值. 以[a,b]=[Ts/23Ts/2]为边界,待求参数tc(n)的初始值设置为Ts/2以接近实际值td,减少迭代总次数.

    考虑到 L(n,{t_{\mathrm{c}}}(n)) 非单调变化,采用经典二分法无法实现最优值搜索,因此,在增加二分法梯度判断条件的基础上,对搜索路径优化,计算流程如图6所示. 设置判断误差 \varepsilon {\text{ = }}{10^{ - 3}} ,计算最优补偿指标 L({t_{{\text{mid}}}}) {t_{{\text{mid}}}} = (a + b)/2 . 当 L({t_{{\text{mid}}}}) > \varepsilon 时:

    图  6  基于二分法的延时与角度相移滞后计算流程
    Figure  6.  Flowchart of delay and angular phase shift lag based on bisection method

    1) 若目标函数在tmid的梯度值pL(tmid)<0,则梯度计算后选定的二分边界tbetter=b,[a, b]=[tmid, tbetter];

    2) 若pL(tmid)>0,则tbetter=a,[a, b]=[tbetter, tmid];

    3) 若pL(tmid)=0,pL(a)<0且pL(b)<0,则tbetter= min{a, b},[a, b]=[tbetter, tmid](tbetter< tmid)或[a, b]=[tmid, tbetter](tbetter>tmid);

    4) 若pL(tmid)=0,pL(a)>0且pL(b)>0,则完成迭代tc(n)=tmid,即当 L({t_{{\text{mid}}}}) > \varepsilon 时,重复上述迭代计算过程.

    L({t_{{\text{mid}}}}) < \varepsilon 时,完成迭代tc=(a + b)/2,然后再增加一步迭代,确认最优补偿时间.

    在实验室中搭建高速磁浮长定子直线同步电机低速试验平台,如图7所示. 实际磁浮列车中,动子布置在长定子下方,动子励磁后与长定子铁芯产生吸引力克服列车重力实现悬浮. 为简化电机设计与安装难度,采用动子在上定子在下的布置方法. 其中:动子由1个整磁极与2个半磁极构成;受限于变流器容量,定子绕组采用集中式绕法;中性点采用星型连接方式;实际测速采用磁栅传感器. 驱动器试验平台包括上位机、示波器、实时数字控制器、直流电源、三电平电压型逆变器,实时数字控制器采用RTU-Box控制器,试验逆变器开关频率2 k,注入方波频率1 k,注入电压20 V,试验平台关键参数如表1所示.

    图  7  试验平台与驱动控制平台
    Figure  7.  Test platform and drive control platform
    表  1  磁浮电机试验平台主要参数
    Table  1.  Main parameters of maglev motor test platform
    参数 数值
    直流侧电压/V 220
    定子相电阻/Ω 0.12
    d 轴电感/mH 1.8
    q 轴电感/mH 1.4
    定子极距/mm 2.58
    动子极距/mm 266.5
    励磁电流/A 20~23
    动子励磁磁链/Wb 0.324 7
    下载: 导出CSV 
    | 显示表格

    补偿前、后,当q轴控制电流设置为20、2122 A时,实际电角度 {\theta _{\text{e}}} 、估计电角度 {\hat \theta _{\text{e}}} 、角度误差 \Delta {\theta _{\text{e}}} q轴电流误差 \Delta {i_{\text{q}}} 的变化分别如图89所示. 从图8可以看出,角度误差分别在−0.52~0.86 rad、−0.41~0.71 rad、−0.32~0.68 rad;从图9可以看出,对应的估计角度误差分别降至了−0.22~0.23 rad、−0.20~0.21 rad、−0.18~0.19 rad;根据两图电流误差显示,由于长定子定位力,反馈电流有一定的周期波动,补偿前后电流波动强度几乎保持一致.

    图  8  补偿前不同给定电流控制效果
    Figure  8.  Control effect of different set currents before compensation
    图  9  补偿后不同给定电流控制效果
    Figure  9.  Control effect of different set currents after compensation

    图10显示了补偿前,当给定速度为0.8、0.9、1.0 m/s时, {\theta _{\text{e}}} {\hat \theta _{\text{e}}} \Delta {\theta _{\text{e}}} 与跟踪速度误差 \Delta v 的变化.可以看出,角度误差分别在−0.23~0.53、−0.18~0.51、−0.17~0.49 rad,稳态速度最大跟踪误差为0.36 m/s左右. 图11显示了补偿后,对应的角度误差分别降至了−0.21~0.17、−0.17~0.15、−0.15~0.12 rad,稳态速度最大跟踪误差降至0.21 m/s左右. 可以发现,补偿后最大角度误差分别减小约67.9%、70.5%和75.5%,平均约70%左右,速度跟踪误差减小50%左右.

    图  10  补偿前不同给定速度控制效果
    Figure  10.  Control effect of different set speeds before compensation

    综合上述,由于齿槽效应、端部效应以及长定子铁芯间气隙通断影响,当电机达到稳态时,电流环反馈电流与速度环反馈速度,在给定值上下存在一定波动,如表23所示. 当考虑延时对控制周期内电角度相移补偿后,电角度估计误差明显减小,且电流与速度跟踪性能也有一定的提升. 针对控制延时与采样延时导致的电角度观测误差问题,一方面可以进一步优化系统控制器性能,缩短采样周期;另一方面可以通过算法对控制系统总延时计算补偿.

    表  2  不同电流下补偿前、后误差最大波动
    Table  2.  Maximum fluctuation of error before and after compensation under different currents
    电流/A电角误差/rad电流误差/A电角波动变化/%电流波动变化/%
    补偿前补偿后补偿前补偿后
    200.860.237.57.573.30
    210.710.217.57.570.40
    220.680.197.57.572.10
    下载: 导出CSV 
    | 显示表格
    表  3  不同速度下补偿前、后误差最大波动
    Table  3.  Maximum fluctuation of error before and after compensation under different speeds
    速度/(m·s−1电角误差/rad速度误差/(m·s−1电角波动变化/%电流波动变化/%
    补偿前补偿后补偿前补偿后
    0.80.530.170.360.2167.950
    0.90.510.150.360.2170.550
    1.00.490.120.360.2175.550
    下载: 导出CSV 
    | 显示表格
    图  11  补偿后不同给定速度控制效果
    Figure  11.  Control effect of different set speeds after compensation

    针对磁浮列车零低速无传感控制高频响应电流电角度相位滞后与速度跟踪累积误差对列车控制精度的影响,提出一种考虑相移补偿的磁浮列车零低速高频信号注入无传感控制方法,得到以下结论:

    1) 所提出的估计角度偏差最小化寻优方法能够准确计算控制周期内的控制延时,反映相移误差.

    2) 补偿后的估计电角度误差减小,参与电流闭环对电流波动影响不大.

    3) 补偿后的角速度参与速度闭环能够在一定程度上提升速度跟踪控制性能.

    本文提出的考虑相移补偿高频注入无传感方法可以准确地计及延时导致的相移滞后的影响,有利于实现列车零低速速度跟踪误差的补偿,从而提高高速磁浮无传感控制性能.

  • 图 1  常导高速磁浮直线长定子电机结构

    Figure 1.  Structure of EMS high-speed linear LSM

    图 2  考虑相移滞后影响的高频响应各坐标系

    Figure 2.  Coordinate system of high-frequency response considering effect of phase shift lag

    图 3  考虑延时的相移滞后示意

    Figure 3.  Phase shift lag considering delay

    图 4  考虑相位补偿的高频方波注入无传感控制框图

    Figure 4.  Sensorless control for HFSI considering phase shift lag compensation

    图 5  考虑梯度变化的二分法延时计算结构

    Figure 5.  Bisection delay computational structure considering gradient change

    图 6  基于二分法的延时与角度相移滞后计算流程

    Figure 6.  Flowchart of delay and angular phase shift lag based on bisection method

    图 7  试验平台与驱动控制平台

    Figure 7.  Test platform and drive control platform

    图 8  补偿前不同给定电流控制效果

    Figure 8.  Control effect of different set currents before compensation

    图 9  补偿后不同给定电流控制效果

    Figure 9.  Control effect of different set currents after compensation

    图 10  补偿前不同给定速度控制效果

    Figure 10.  Control effect of different set speeds before compensation

    图 11  补偿后不同给定速度控制效果

    Figure 11.  Control effect of different set speeds after compensation

    表  1  磁浮电机试验平台主要参数

    Table  1.   Main parameters of maglev motor test platform

    参数 数值
    直流侧电压/V 220
    定子相电阻/Ω 0.12
    d 轴电感/mH 1.8
    q 轴电感/mH 1.4
    定子极距/mm 2.58
    动子极距/mm 266.5
    励磁电流/A 20~23
    动子励磁磁链/Wb 0.324 7
    下载: 导出CSV

    表  2  不同电流下补偿前、后误差最大波动

    Table  2.   Maximum fluctuation of error before and after compensation under different currents

    电流/A电角误差/rad电流误差/A电角波动变化/%电流波动变化/%
    补偿前补偿后补偿前补偿后
    200.860.237.57.573.30
    210.710.217.57.570.40
    220.680.197.57.572.10
    下载: 导出CSV

    表  3  不同速度下补偿前、后误差最大波动

    Table  3.   Maximum fluctuation of error before and after compensation under different speeds

    速度/(m·s−1电角误差/rad速度误差/(m·s−1电角波动变化/%电流波动变化/%
    补偿前补偿后补偿前补偿后
    0.80.530.170.360.2167.950
    0.90.510.150.360.2170.550
    1.00.490.120.360.2175.550
    下载: 导出CSV
  • [1] 丁叁叁. 时速600公里高速磁浮交通系统[M]. 上海:上海科学技术出版社,2021.
    [2] 林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.

    LING Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of High-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
    [3] 朱进权,葛琼璇,张波,等. 考虑悬浮系统影响的高速磁悬浮列车牵引控制策略[J]. 电工技术学报,2022,37(12): 3087-3096.

    ZHU Jinquan, GE Qiongxuan, ZHANG Bo, et al. Traction control strategy of high-speed maglev considering the influence of suspension system[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3087-3096.
    [4] 康劲松,丁浩,倪菲,等. 计及悬浮系统影响的高速磁浮直线同步电机建模方法[J]. 西南交通大学学报,2024,59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431

    KANG Jinsong, DING Hao, NI Fei, et al. Modeling of high-speed maglev linear synchronous motors considering influence of suspension system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
    [5] ZHU J Q, GE Q X, SUN P K. Extended state observer-based sensorless control for high-speed maglev application in single-feeding mode and double-feeding mode[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1350-1361. doi: 10.1109/TTE.2021.3093342
    [6] WANG G L, VALLA M, SOLSONA J. Position sensorless permanent magnet synchronous machine drives—a review[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5830-5842. doi: 10.1109/TIE.2019.2955409
    [7] KIM H, JUNG H S, SUL S K. Stator winding temperature and magnet temperature estimation of IPMSM based on high-frequency voltage signal injection[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2296-2306. doi: 10.1109/TIE.2022.3174285
    [8] ORTOMBINA L, BERTO M, ALBERTI L. Sensorless drive for salient synchronous motors based on direct fitting of elliptical-shape high-frequency currents[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3394-3403. doi: 10.1109/TIE.2022.3177753
    [9] 吴婷. 永磁同步电机全速范围无位置传感器控制策略研究[D]. 长沙:湖南大学,2022.
    [10] 王涛,黄景春,杨天昊. 基于改进的Super-Twisting滑模观测器的永磁同步电机无传感器控制[J]. 西南交通大学学报,2025,60(3):445-453: .

    WANG Tao, HUANG Jinchun, YANG Tianhao. Sensorless control of permanent magnet synchronous motor based on improved Super-Twisting sliding mode observer [J]. Journal of Southwest Jiaotong University, 2025, 60(3):445-453.
    [11] 沈泽微,蒋栋,陈嘉楠. 一种通用的PWM变流器开关脉冲延时补偿策略[J]. 中国电机工程学报,2021,41(9): 2990-2998.

    SHEN Zewei, JIANG Dong, CHEN Jianan. A general switch pulse delay compensation strategy for PWM converter[J]. Proceedings of the CSEE, 2021, 41(9): 2990-2998.
    [12] 鄢永,黄文新. 基于闭环电流预测的永磁同步电机电流环延时补偿策略研究[J]. 中国电机工程学报,2022,42(10): 3786-3795.

    YAN Yong, HUANG Wenxin. Research on delay compensation strategy of permanent magnet synchronous motor based on closed-loop current prediction[J]. Proceedings of the CSEE, 2022, 42(10): 3786-3795.
    [13] 王志强,郭伟鹏,桑孜良,等. 高速磁浮列车导向系统优化控制方法研究[J]. 西南交通大学学报,2025,60(4): .

    WANG Zhiqiang, GUO Weipeng, SANG Ziliang, et al. Optimization control for the guidance system of high-speed maglev train [J]. Journal of Southwest Jiaotong University, 2025, 60(4): .
    [14] WANG Y R, XU Y X, ZOU J B. Sliding-mode sensorless control of PMSM with inverter nonlinearity compensation[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10206-10220. doi: 10.1109/TPEL.2018.2890564
    [15] WU X, LI C, ZHANG Y Y, et al. Sensorless control of IPMSM equipped with LC sinusoidal filter based on full-order sliding mode observer and feedforward QPLL[J]. IEEE Transactions on Power Electronics, 2024, 39(7): 8072-8085. doi: 10.1109/TPEL.2024.3390050
    [16] LIU Z H, NIE J, WEI H L, et al. A newly designed VSC-based current regulator for sensorless control of PMSM considering VSI nonlinearity[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4420-4431. doi: 10.1109/JESTPE.2020.3033037
    [17] WU S H, HU C X, ZHAO Z Y, et al. High-accuracy sensorless control of permanent magnet linear synchronous motors for variable speed trajectories[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 4396-4406. doi: 10.1109/TIE.2023.3288145
    [18] ZHANG H, LIANG W R, GAO L Y, et al. Switching angle fitting-based delay compensation with IPLL for IPMSM sensorless drives under SHEPWM[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 660-669. doi: 10.1109/TTE.2023.3276878
    [19] CAO X Q, GE Q X, ZHU J Q, et al. Periodic traction force fluctuations suppression strategy of maglev train based on flux linkage observation and harmonic current injection[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 3434-3451. doi: 10.1109/TTE.2022.3221193
    [20] ZHANG H, LIU W G, CHEN Z, et al. An overall system delay compensation method for IPMSM sensorless drives in rail transit applications[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1316-1329. doi: 10.1109/TPEL.2020.3015742
    [21] KANG J S, DING H, ZOU P R, et al. Model predictive thrust force control for 3L-NPC fed linear synchronous motor of maglev train[J]. IEEE Transactions on Transportation Electrification, 2024, 1: 3368071.1-3368071.9.
    [22] KANG J S, MU S Y, NI F. Improved EL model of long stator linear synchronous motor via analytical magnetic coenergy reconstruction method[J]. IEEE Transactions on Magnetics, 2020, 56(8): 3002964.1-3002964.13.
    [23] 张昕,翟凌露,王舰深,等. 基于加权融合的常导高速磁浮列车UKF定位算法[J]. 西南交通大学学报,2024,59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501

    ZHANG Xin, ZHAI Linglu, WANG Jianshen, et al. Weighted fusion-based unscented Kalman filter positioning algorithm for normal-conducting high-speed maglev trains[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
    [24] WU T, LUO D R, WU X, et al. Square-wave voltage injection based PMSM sensorless control considering time delay at low switching frequency[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5525-5535. doi: 10.1109/TIE.2021.3094444
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-10-29
  • 网络出版日期:  2025-03-08

目录

/

返回文章
返回