• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超导电动悬浮列车明线气动特性及其对悬浮状态的影响

赵春发 李煜寒 彭也也 杨晶 宁晓芳 冯洋

赵春发, 李煜寒, 彭也也, 杨晶, 宁晓芳, 冯洋. 超导电动悬浮列车明线气动特性及其对悬浮状态的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240470
引用本文: 赵春发, 李煜寒, 彭也也, 杨晶, 宁晓芳, 冯洋. 超导电动悬浮列车明线气动特性及其对悬浮状态的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240470
ZHAO Chunfa, LI Yuhan, Peng Yeye, YANG Jing, NING Xiaofang, FENG Yang. Aerodynamic Characteristics of Open Wire of Superconducting Maglev Train and Its Influence on Levitation State[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240470
Citation: ZHAO Chunfa, LI Yuhan, Peng Yeye, YANG Jing, NING Xiaofang, FENG Yang. Aerodynamic Characteristics of Open Wire of Superconducting Maglev Train and Its Influence on Levitation State[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240470

超导电动悬浮列车明线气动特性及其对悬浮状态的影响

doi: 10.3969/j.issn.0258-2724.20240470
基金项目: 国家自然科学基金面上项目(52172375);国家资助博士后研究人员计划课题(GZB20230612);国家自然科学基金青年项目(52402454);中国中车股份有限公司原创技术十年培育专项(2022CGY014);中车十四五重大专项(2021CCZ002-2)
详细信息
    作者简介:

    赵春发(1973—),男,研究员,研究方向为轨道交通系统动力学,E-mail:cfzhao@swjtu.edu.cn

  • 中图分类号: U266.4

Aerodynamic Characteristics of Open Wire of Superconducting Maglev Train and Its Influence on Levitation State

  • 摘要:

    超导电动悬浮列车设计速度达到600 km/h,车体附近流动加剧,受到的气动荷载也急剧增加. 为研究超导电动悬浮列车气动荷载作用下车辆的悬浮状态,基于有限元方法,采用SST k-ω湍流模型计算并分析某型磁浮列车明线工况下气动特性;并基于气动特性提出一种分部件提取气动荷载及加载方式,可以更为真实地反映气动荷载作用下的动力学响应. 磁浮列车气动特性结果表明:U型轨道较大程度限制车体附近流动,尾涡在U型轨内部需要较长距离耗散;磁浮列车悬浮架与轨道间横向间隙变化使得悬浮架底部出现负压,以600 km/h速度为例,整体提取头车及中间车为升力,尾车则为下压力;分部件提取三车体均为升力,且升力幅值头车>尾车>中间车,悬浮架受到下压力且一位及四位悬浮架压力幅值大于二位及三位悬浮架;2种提取方式的气动荷载合力相同,但分部件提取时,仅车体气动升力幅值达到整体提取方式的约5倍. 气动荷载作用下车辆动力学结果表明:气动荷载对悬浮架位移影响较为有限,最大高度变化量不超过7 mm,且不同加载方式下几乎无差异;2种加载方式对动力学影响的区别主要反映于空簧受力变化量,分部件加载方式下空簧力最大为整体加载方式空簧力的2.86倍.

     

  • 图 1  磁浮列车几何模型

    Figure 1.  Geometric model of maglev train

    图 2  计算域示意

    Figure 2.  Computational domain

    图 3  计算网格及加密区

    Figure 3.  Computational grid and area of encryption

    图 4  车底中线压力系数

    Figure 4.  Center line pressure coefficient beneath vehicle

    图 5  TR08测点示意(单位:m)

    Figure 5.  Measuring points of TR08 (unit: m)

    图 6  磁浮列车表面压力分布

    Figure 6.  Pressure distribution in surface of maglev train

    图 7  磁浮列车空间涡流

    Figure 7.  Space vortex of maglev train

    图 8  不同截面涡量流线

    Figure 8.  Vortex streamlines of different sections

    图 9  悬浮架附近压力及流动迹线

    Figure 9.  Pressure and flow trace near suspension frame

    图 10  悬浮架截面压力及速度云图

    Figure 10.  Pressure and velocity contours of suspension frame section

    图 11  不同提取方式下车体气动荷载

    Figure 11.  Aerodynamic load of vehicle body under different extraction methods

    图 12  悬浮架气动荷载

    Figure 12.  Aerodynamic load of suspension frame

    图 13  磁浮列车动力学模型

    Figure 13.  Dynamics model of maglev train

    图 14  不同加载方式示意

    Figure 14.  Different loading modes

    图 15  悬浮架悬浮高度变化量

    Figure 15.  Change in suspension height of suspension frame

    图 16  悬浮力变化量

    Figure 16.  Change in suspension force

    图 17  空簧力变化量

    Figure 17.  Chang in air spring force

    表  1  网格参数

    Table  1.   Grid parameters

    网格质量 数量/
    (×107个)
    车体最大面网格/mm 加密区最大体网格/mm
    粗糙 4.74 100 200
    中等 6.60 100 100
    精细 7.92 80 100
    下载: 导出CSV

    表  2  网格无关性验证

    Table  2.   Verification of grid independence

    网格 ${C_{L,h}}$ ${C_{L,t}}$ $ {C_{D,h}} $ ${C_{D,t}}$
    粗糙 0.0826 0.0665 0.0975 0.0828
    中等 0.0875 0.0755 0.0954 0.0861
    精细 0.0868 0.0713 0.0975 0.0905
    下载: 导出CSV

    表  3  时均压力系数计算方法验证

    Table  3.   Validation of time-averaged pressure coefficient calculation method

    测点 实测值 计算值 相对误差/%
    p1 0.240 0.21641 9.83
    p2 0.034 0.03294 3.13
    p3 0.016 0.01547 3.31
    下载: 导出CSV
  • [1] 丁叁叁,付善强,梁鑫. 中国高速磁浮交通工程实践与展望[J]. 前瞻科技,2023,2(4): 40-48.

    DING Sansan, FU Shangqiang, LIANG Xin. Engineering practice and prospect of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 40-48.
    [2] 刘士苋,王磊,王路忠,等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报,2023,58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621

    LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic suspension trains and on-board superconducting magnets[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
    [3] 于青松,李凯,胡浩,等. 超导电动悬浮应用研究与技术展望[J]. 机车电传动,2023(4): 1-8.

    YU Qingsong, LI Kai, HU Hao, et al. Research and technological prospects of applications for superconducting electrodynamic suspension[J]. Electric Drive for Locomotives, 2023(4): 1-8.
    [4] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [5] 田红旗,张雷,王田天,等. 面向行车平稳性的高速磁浮列车气动设计[J]. 前瞻科技,2023,2(4): 70-77.

    TIAN Hongqi, ZHANG Lei, WANG Tiantian, et al. Aerodynamic design of high-speed maglev trains for running stability[J]. Science and Technology Foresight, 2023, 2(4): 70-77.
    [6] 丁叁叁,姚拴宝,陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报,2020,56(8): 228-234. doi: 10.3901/JME.2020.08.228

    DING Sansan, YAO Shuanbao, CHEN Dawei. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering, 2020, 56(8): 228-234. doi: 10.3901/JME.2020.08.228
    [7] 丁叁叁,刘加利,陈大伟. 600 km/h高速磁浮交通系统气动设计[J]. 实验流体力学,2023,37(1): 1-8. doi: 10.11729/syltlx20220131

    DING Sansan, LIU Jiali, CHEN Dawei. Aerodynamic design of the 600 km/h high-speed maglev transportation system[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 1-8. doi: 10.11729/syltlx20220131
    [8] ZHOU P, LI T, ZHAO C F, et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University: Science A, 2020, 21(5): 366-381. doi: 10.1631/jzus.A1900412
    [9] 孟石,周丹,孟爽. 轨道间隙对磁浮列车气动性能的影响[J]. 中南大学学报(自然科学版),2020,51(12): 3537-3545. doi: 10.11817/j.issn.1672-7207.2020.12.027

    MENG Shi, ZHOU Dan, MENG Shuang. Effect of rail gap on aerodynamic performance of maglev train[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3537-3545. doi: 10.11817/j.issn.1672-7207.2020.12.027
    [10] 刘加利,于梦阁,陈大伟,等. 考虑四极子声源的高速磁浮列车气动噪声数值模拟方法[J]. 西南交通大学学报,2024,59(1): 54-61. doi: 10.3969/j.issn.0258-2724.20220151

    LIU Jiali, YU Mengge, CHEN Dawei, et al. Numerical simulation method of aerodynamic noise of high-speed maglev train considering quadrupole noise source[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 54-61. doi: 10.3969/j.issn.0258-2724.20220151
    [11] 李一凡,李田,张继业,等. 导流装置对高速磁浮列车气动特性的影响[J]. 实验流体力学,2023,37(1):91-99.

    LI Yifan, LI Tian, ZHANG Jiye, et al. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1):91-99.
    [12] 王潇飞,胡啸,李宗澎,等. 轨道结构对真空管道磁浮列车气动特性的影响[J]. 实验流体力学,2023,37(3): 9-18. doi: 10.11729/syltlx20220140

    WANG Xiaofei, HU Xiao, LI Zongpeng, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 9-18. doi: 10.11729/syltlx20220140
    [13] KOZUMA Y, YAMAMOTO K, TAGAWA N, et al. D601 main design features of the newest vehicles of the yamanashi maglev test line[J]. The Proceedings of International Symposium on Seed-Up and Service Technology for Railway and Maglev Systems: STECH, 2003, 2003: 461-466.
    [14] YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7-12. doi: 10.2219/rtriqr.45.7
    [15] LIN T T, YANG M Z, ZHANG L, et al. Influence of the suspension gap on the wake characteristics of a 600 km/h superconducting maglev train[J]. Physics of Fluids, 2024, 36(2): 1-11.
    [16] 赵春发,冯洋,翟婉明. 面向列车稳定舒适运行的磁浮交通车线动力学参数匹配设计[J]. 前瞻科技,2023,2(4): 49-60.

    ZHAO Chunfa, FENG Yang, ZHAI Wanming. Matching design of train and line dynamics parameters of maglev transportation oriented toward stable and comfortable train running[J], Science and Technology Foresight, 2023, 2(4): 49-60.
    [17] 杨永刚,陈大伟,梅元贵. 600 km/h高速磁浮列车明线交会横向气动性能[J]. 振动与冲击,2022,41(1): 137-146.

    YANG Yonggang, CHEN Dawei, MEI Yuangui. Lateral aerodynamic performance of 600 km/h high-speed maglev train during open line intersection[J]. Journal of Vibration and Shock, 2022, 41(1): 137-146.
    [18] 刘堂红,田红旗. 磁浮列车明线交会横向振动分析[J]. 交通运输工程学报,2005,5(1): 39-44. doi: 10.3321/j.issn:1671-1637.2005.01.010

    LIU Tanghong, TIAN Hongqi. Transverse vibration analysis of two maglev trains passing by in open air[J]. Journal of Traffic and Transportation Engineering, 2005, 5(1): 39-44. doi: 10.3321/j.issn:1671-1637.2005.01.010
    [19] 南凯威,刘梦娟,郝占宙,等. 典型气动荷载作用下磁浮列车动力学特性研究[J]. 实验流体力学,2023,37(3): 69-83. doi: 10.11729/syltlx20220108

    NAN Kaiwei, LIU Mengjuan, HAO Zhanzhou, et al. Research of dynamic characteristics of maglev train under typical aerodynamic loads[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 69-83. doi: 10.11729/syltlx20220108
    [20] WU H, ZENG X H, GAO D G, et al. Dynamic stability of an electromagnetic suspension maglev vehicle under steady aerodynamic load[J]. Applied Mathematical Modelling, 2021, 97: 483-500. doi: 10.1016/j.apm.2021.04.008
    [21] 张娟,赵春发,冯洋,等. 超导磁浮列车电动悬浮导向力学特性研究[J]. 机械,2020,47(9): 25-32. doi: 10.3969/j.issn.1006-0316.2020.09.004

    ZHANG Juan, ZHAO Chunfa, FENG Yang, et al. Study on mechanical characteristics of the electrodynamic levitation and guidance system for the superconducting maglev train[J]. Machinery, 2020, 47(9): 25-32. doi: 10.3969/j.issn.1006-0316.2020.09.004
    [22] 田红旗. 列车空气动力学[M]. 北京:中国铁道出版社,2007:26-57.
    [23] 毕海权,雷波,张卫华. TR型磁浮列车气动力特性数值计算研究[J]. 铁道学报,2004,26(4): 51-54. doi: 10.3321/j.issn:1001-8360.2004.04.011

    BI Haiquan, LEI Bo, ZHANG Weihua. Research on numerical calculation for aerodynamic characteristics of the TR maglev train[J]. Journal of the China Railway Society, 2004, 26(4): 51-54. doi: 10.3321/j.issn:1001-8360.2004.04.011
    [24] NING X F, ZHAO C F, YU Q S, et al. Suspension and guidance performance of a new superconducting EDS system using the 8-shaped ground coils with nonequal turns[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(4): 3601511.1-3601511.11.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2024-11-27
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回