Optimal Design of Power Supply Scheme for Sharing Resources in Urban Rail Interchange Stations
-
摘要:
在不同线路之间通过换乘站实现供电资源共享的背景下,为降低线网供电系统有功网损,以优化供电系统设计为目标,考虑多工况运行的约束条件,提出采用三重校验算法的城市轨道跨换乘站资源共享供电方案优化设计方法. 建立集中式城轨供电系统拓扑模型和跨换乘站资源共享数学模型,基于多叉树拓扑搜索得到候选方案集合,对候选方案进行三重校验优化,获得有功损耗最低的线网供电方案,并以5条线路的实际供电系统为分析实例. 研究结果表明:相比于传统的主变电所资源共享供电方案,本文提出的跨换乘站资源共享供电方案可减少整体供电系统的初期建设成本,降低
2296.580 MW•h的供电系统年运行网损.Abstract:In the context of power supply resource sharing between different lines through interchange stations, optimizing the power supply system design can help reduce active power losses in the network. By considering the constraints of multi-operation scenarios, a novel optimal design method for a power supply scheme for sharing resources in urban rail interchange stations based on a triple-checking algorithm was proposed. A topological model for centralized power supply systems for urban rail and a mathematical model for resource sharing in interchange stations were established. A multi-branch tree topology search was employed to generate a candidate solution set, which was then optimized using the triple-checking algorithm to identify the optimal power supply scheme with the lowest active power loss in the network. An analysis was performed using the actual power supply system of five lines as an example. The results show that compared to the traditional main substation-based power supply scheme for sharing resources, the proposed power supply scheme for sharing resources in urban rail interchange stations reduces the initial construction costs of the overall power supply system and reduces annual operational network losses by 2 296.580 MW•h.
-
表 1 算例参数
Table 1. Example parameters
参数名称 数据 主变电所进出线电缆电阻/(Ω•km−1) 0.0971 主变电所进出线电缆电抗/(Ω•km−1) 0.1764 主变电所进出线电缆电纳/(S·km−1) 55.3864 × 10−635 kV 环网电缆电阻/(Ω•km−1) 0.1587 35 kV 环网电缆电抗/(Ω•km−1) 0.1871 35 kV 环网电缆电纳/(S•km−1) 49.078 × 10−6 主变压器过载系数 1.3 表 2 主变压器容量
Table 2. Main transformer capacity
MV·A 主变电所 M0 M Ⅰ段安装容量 Ⅱ段安装容量 Ⅰ段平均功率 Ⅱ段平均功率 Ⅰ段安装容量 Ⅱ段安装容量 1 31.5 31.5 17.8 17.8 20.0 20.0 2 40.0 40.0 51.6 51.6 63.0 63.0 3 31.5 31.5 43.4 43.4 50.0 50.0 4 63.0 63.0 20.3 20.3 31.5 31.5 5 40.0 40.0 60.7 60.7 63.0 63.0 6 40.0 40.0 38.4 38.4 40.0 40.0 表 3 N−1第2种工况负载率
Table 3. Load rate of second working condition of N−1
解列主
变电所支援供电
主变电所主变压器负载率/% Ⅰ段 Ⅱ段 1 6 97.47 87.21 2 5 98.18 104.11 3 4 113.11 116.53 4 3 71.15 73.28 5 2 104.96 122.73 6 5 85.47 99.71 7 5 92.85 106.13 表 4 全日行车计划
Table 4. Full-day operation schedule
发车间隔/s 150 360 480 运行时间/h 6 8 4 -
[1] 高仕斌,罗嘉明,陈维荣,等. 轨道交通 “网-源-储-车” 协同供能技术体系[J]. 西南交通大学学报,2024,59(5): 959-979,989. doi: 10.3969/j.issn.0258-2724.20220210GAO Shibin, LUO Jiaming, CHEN Weirong, et al. Rail transit “network-source-storage-vehicle” collaborative energy supply technology system[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210 [2] 刘继宗,张祖涛,王浩,等. 城轨交通制动能量利用技术研究现状与展望[J]. 西南交通大学学报,2024,59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676LIU Jizong, ZHANG Zutao, WANG Hao, et al. Braking energy utilization in urban rail transit: status and prospects[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676 [3] 施仲衡,丁树奎. 城市轨道交通绿色低碳发展策略[J]. 都市快轨交通,2022,35(1): 1-4,11. doi: 10.3969/j.issn.1672-6073.2020.01.001SHI Zhongheng, DING Shukui. Strategies for green and low-carbon development of urban rail transit[J]. Urban Rapid Rail Transit, 2022, 35(1): 1-4,11. doi: 10.3969/j.issn.1672-6073.2020.01.001 [4] 贺威俊,高仕斌,黄彦全,等. 轨道交通牵引供变电技术[M]. 2版. 成都:西南交通大学出版社,2016. [5] 任亚娟. 合肥市轨道交通主变电所的资源共享研究[J]. 城市轨道交通研究,2020,23(5): 64-67.REN Yajuan. Resource sharing of urban rail transit main substation in Hefei city[J]. Urban Mass Transit, 2020, 23(5): 64-67. [6] 龚晓冬. 城市轨道交通主变电所资源共享问题研究[J]. 城市轨道交通研究,2016,19(9): 87-92.GONG Xiaodong. Resource sharing at urban rail transit main substation[J]. Urban Mass Transit, 2016, 19(9): 87-92. [7] 刘炜,谢文君,孙名刚,等. 基于分层优化的分散式城轨供电系统网络化支援供电[J]. 电工技术学报,2021,36(11): 2306-2314.LIU Wei, XIE Wenjun, SUN Minggang, et al. Research on networked support power supply of urban rail power supply system based on hierarchical optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2306-2314. [8] 李群湛. 城市轨道交通交流牵引供电系统及其关键技术[J]. 西南交通大学学报,2015,50(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001LI Qunzhan. Industrial frequency single-phase AC traction power supply system and its key technologies for urban rail transit[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001 [9] 张丽艳,杨亮辉,韩笃硕. 城轨交流供电系统极限供电距离分析[J]. 西南交通大学学报,2021,56(4): 698-705.ZHANG Liyan, YANG Lianghui, HAN Dushuo. Analysis on extreme distance of power supply for urban rail AC power supply system[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 698-705. [10] 麻秀范,丁宁,李龙. 配电网重构中网络辐射形与连通性的判断[J]. 电工技术学报,2014,29(8): 289-293. doi: 10.3969/j.issn.1000-6753.2014.08.037MA Xiufan, DING Ning, LI Long. Judging radial and connectivity of network in distribution networks reconfiguration[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 289-293. doi: 10.3969/j.issn.1000-6753.2014.08.037 [11] 张丽艳,孔宗泽,边力丁. 新建牵引变电所的负荷预测及变压器容量优化配置[J]. 西南交通大学学报,2020,55(4): 847-855. doi: 10.3969/j.issn.0258-2724.20190429ZHANG Liyan, KONG Zongze, BIAN Liding. Load forecasting and transformer capacity optimization for newly-built traction substation[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 847-855. doi: 10.3969/j.issn.0258-2724.20190429 [12] 肖峻,贺琪博,白临泉,等. 实现最大供电能力的配电网馈线与主变压器容量匹配[J]. 电力系统自动化,2016,40(19): 53-58. doi: 10.7500/AEPS20150706007XIAO Jun, HE Qibo, BAI Linquan, et al. Optimal capacity ratio between feeders and main transformers to implement total supply capability[J]. Automation of Electric Power Systems, 2016, 40(19): 53-58. doi: 10.7500/AEPS20150706007 [13] GUO X X, LI Q Z, XIE S F, et al. Modeling and capacitance effect analysis of the cable traction network of an electrified railway[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8): 1803-1811. doi: 10.1177/0954409715615157 [14] 郭晓斌,许悦,程乐峰,等. 基于拓扑相似性分析的配电网网架可靠性评估[J]. 高电压技术,2018,44(11): 3760-3769.GUO Xiaobin, XU Yue, CHENG Lefeng, et al. Reliability assessment of distribution network architecture based on topological similarity analysis[J]. High Voltage Engineering, 2018, 44(11): 3760-3769. [15] 魏震波,刘俊勇,朱国俊,等. 基于可靠性加权拓扑模型下的电网脆弱性评估模型[J]. 电工技术学报,2010,25(8): 131-137.WEI Zhenbo, LIU Junyong, ZHU Guojun, et al. Vulnerability evaluation model to power grid based on reliability-parameter-weighted topological model[J]. Transactions of China Electrotechnical Society, 2010, 25(8): 131-137. [16] 李晓璐,于昕明,雷方舒,等. 城市轨道交通系统灾害链网络模型构建与评价[J]. 中国安全科学学报,2018,28(6): 179-184.LI Xiaolu, YU Xinming, LEI Fangshu, et al. Construction of disaster chain network model and evaluation of network index for urban rail transit system[J]. China Safety Science Journal, 2018, 28(6): 179-184. [17] 林圣,崔臻,杨茜茜,等. 地铁中压环网供电系统可靠性评估方法[J]. 西南交通大学学报,2020,55(6): 1155-1162. doi: 10.3969/j.issn.0258-2724.20190812LIN Sheng, CUI Zhen, YANG Qianqian, et al. Reliability evaluation method for metro medium-voltage ring-network power supply system[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1155-1162. doi: 10.3969/j.issn.0258-2724.20190812 [18] 刘炜,娄颖,张戬,等. 计及城市轨道逆变回馈装置的交直流统一供电计算[J]. 电工技术学报,2019,34(20): 4381-4391.LIU Wei, LOU Ying, ZHANG Jian, et al. Unified AC/DC power supply calculation taking into account urban rail inverter feedback devices[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4381-4391. [19] 诸斐琴,杨中平,林飞,等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报,2019,34(3): 579-588.ZHU Feiqin, YANG Zhongping, LIN Fei, et al. Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588. [20] 陈晓刚,孙可,曹一家. 基于复杂网络理论的大电网结构脆弱性分析[J]. 电工技术学报,2007,22(10): 138-144. doi: 10.3321/j.issn:1000-6753.2007.10.025CHEN Xiaogang, SUN Ke, CAO Yijia. Structural vulnerability analysis of large power grid based on complex network theory[J]. Transactions of China Electrotechnical Society, 2007, 22(10): 138-144. doi: 10.3321/j.issn:1000-6753.2007.10.025 -