• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

新型异极径向混合磁悬浮轴承的建模及仿真

刘欣 袁鹏禹

刘欣, 袁鹏禹. 新型异极径向混合磁悬浮轴承的建模及仿真[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230315
引用本文: 刘欣, 袁鹏禹. 新型异极径向混合磁悬浮轴承的建模及仿真[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230315
LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230315
Citation: LIU Xin, YUAN Pengyu. Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230315

新型异极径向混合磁悬浮轴承的建模及仿真

doi: 10.3969/j.issn.0258-2724.20230315
基金项目: 国家自然科学基金项目(51875408);天津市研究生科研创新项目(2021YJSB229)
详细信息
    作者简介:

    刘欣(1981—),女,教授,博士,研究方向为磁悬浮轴承技术,E-mail:liuxin@tiangong.edu.cn

  • 中图分类号: TH133.3

Modeling and Simulation of a Novel Heteropolar Radial Hybrid Magnetic Bearing

  • 摘要:

    针对高速电机和飞轮储能系统等对空间利用率要求较高的场合,提出一种新型异极径向混合磁轴承(Heteropolar radial hybrid magnetic bearing,HRHMB). 首先,建立该磁轴承的等效磁路模型,通过解析磁场得出其电流刚度、位移刚度及电磁力,并通过有限元仿真验证其有效性;然后,在相同约束条件下与传统偏置磁轴承进行对比,分析磁轴承的刚度特性和空间利用率;最后,通过有限元仿真研究新型磁轴承径向两自由度间的电磁力耦合,并与传统磁轴承进行对比. 研究结果表明:在相同承载力等约束条件下,该新型磁轴承的体积仅为传统磁轴承的0.87倍,其电磁力在控制电流和转子位移影响下的相对误差值为6.5%,而传统磁轴承的电磁力相对误差为13.6%,表明新型磁轴承径向两自由度的电磁力耦合小于传统磁轴承,解耦效果良好.

     

  • 图 1  两种混合型磁悬浮轴承结构

    Figure 1.  Two kinds of hybrid magnetic bearing structures

    图 2  新型异极径向混合磁轴承磁场仿真

    Figure 2.  Magnetic field simulation of novel HRHMB

    图 3  新型异极径向混合磁轴承等效磁路

    Figure 3.  Equivalent magnetic circuit of novel HRHMB

    图 4  Y + 方向等效磁路

    Figure 4.  Equivalent magnetic circuit along Y + direction

    图 5  X−方向等效磁路

    Figure 5.  Equivalent magnetic circuit along X− direction

    图 6  气隙磁密随电流变化

    Figure 6.  Variation of magnetic density in air gap with current

    图 7  气隙磁密随位移变化

    Figure 7.  Variation of magnetic density in air gap with displacement

    图 8  径向电流刚度与位移刚度

    Figure 8.  Radial current stiffness and displacement stiffness

    图 9  2种磁轴承的永磁磁通密度分布

    Figure 9.  Permanent magnetic flux density distribution of two types of magnetic bearings

    图 10  2种磁轴承的位移刚度和电流刚度对比

    Figure 10.  Comparison of displacement stiffness and current stiffness of two types of magnetic bearings

    图 11  转子偏心时的耦合特性

    Figure 11.  Coupling characteristics with eccentric rotor

    图 12  转子不偏心时控制电流的耦合特性

    Figure 12.  Coupling characteristics of control current when rotor is not eccentric

    图 13  转子偏移0.1mm时控制电流的耦合特性

    Figure 13.  Coupling characteristics of control current when rotor offsets 0.1 mm

    表  1  磁轴承主要参数

    Table  1.   Main parameters of magnetic bearing

    参数 传统 新型
    定子外直径/mm 130 139
    转子外直径/mm 50 50
    轴向长度/mm 45 45
    主气隙长度/mm 0.5 0.5
    辅助气隙长度/mm 1
    永磁体厚度/mm 2 3
    永磁体宽度/mm 15 8
    磁极截面积/mm2 920 1560
    最大控制电流/A 3.6 12/3
    下载: 导出CSV
  • [1] 张维煜,朱熀秋,袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报,2015,30(12): 12-20. doi: 10.3969/j.issn.1000-6753.2015.12.002

    ZHANG Weiyu, ZHU Huangqiu, YUAN Ye. Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20. doi: 10.3969/j.issn.1000-6753.2015.12.002
    [2] 于苏杭,郭文勇,滕玉平,等. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术,2021,10(5): 1631-1642.

    YU Suhang, GUO Wenyong, TENG Yuping, et al. A review of the structures and control strategies for flywheel bearings[J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642.
    [3] 钟云龙,吴立建,黄晓艳,等. 异极型径向磁轴承的非线性解析模型[J]. 浙江大学学报(工学版),2019,53(1): 193-199. doi: 10.3785/j.issn.1008-973X.2019.01.022

    ZHONG Yunlong, WU Lijian, HUANG Xiaoyan, et al. Nonlinear analytical model of heteropolar radial magnetic bearing[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(1): 193-199. doi: 10.3785/j.issn.1008-973X.2019.01.022
    [4] 朱熀秋,周睿. 逆变器驱动式六极径向-轴向混合磁轴承结构原理及性能分析[J]. 电机与控制学报,2021,25(4): 88-95.

    ZHU Huangqiu, ZHOU Rui. Inverter-fed three-pole radial-axial hybrid magnetic bearings and their improved sturcture[J]. Electric Machines and Control, 2021, 25(4): 88-95.
    [5] 鞠金涛,徐澎,朱熀秋,等. 新型转子结构的三自由度混合磁轴承损耗分析[J]. 西南交通大学学报,2022,57(3): 675-681. doi: 10.3969/j.issn.0258-2724.20210903

    JU Jintao, XU Peng, ZHU Huangqiu, et al. Core loss analysis of three degree-of-freedom hybrid magnetic bearing with novel rotor structure[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 675-681. doi: 10.3969/j.issn.0258-2724.20210903
    [6] 赵航,缪存孝,张立元,等. 磁悬浮径向球面纯电磁磁轴承的设计[J]. 北京航空航天大学学报,2017,43(1): 159-166.

    ZHAO Hang, MIAO Cunxiao, ZHANG Liyuan, et al. Maglev electromagnetic radial spherical magnetic bearing design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 159-166.
    [7] 禹春敏,邓智泉,梅磊,等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报,2021,36(6): 1219-1228.

    YU Chunmin, DENG Zhiquan, MEI Lei, et al. Research of new hybrid axial-radial magnetic bearing based on accurate magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228.
    [8] ZHANG W Y, YANG H K, CHENG L, et al. Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7691-7701.
    [9] 金俊杰,王岩峰,徐程程,等. 人工肾脏泵用磁悬浮轴承设计与磁力特性分析[J]. 西南交通大学学报,2024,59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090

    JIN Junjie, WANG Yanfeng, XU Chengcheng, et al. Design and magnetic force characteristic analysis of magnetic levitation bearing for artificial kidney pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [10] MASLEN E H, SCHWEITZER G, BLEULER H, et al. Magnetic bearings—theory, design and application to rotating machinery [M]. Berlin: Springer, 2009.
    [11] MATSUZAKI T, TAKEMOTO M, OGASAWARA S, et al. A basic study of a novel homopolar type magnetic bearing unifying four C-shaped cores for high output and low loss[C]//2015 IEEE International Magnetics Conference (INTERMAG). Beijing: IEEE, 2015: 8114604.1-8114604.4.
    [12] 赵旭升,邓智泉,汪波. 异极性永磁偏置径向磁轴承的参数设计与实现[J]. 电工技术学报,2012,27(7): 131-138,159.

    ZHAO Xusheng, DENG Zhiquan, WANG Bo. Parameter design and realization of permanent magnet biased heterploar radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 131-138,159.
    [13] LE Y, SUN J J, HAN B C. Modeling and design of 3-DOF magnetic bearing for high-speed motor including eddy-current effects and leakage effects[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3656-3665. doi: 10.1109/TIE.2016.2530778
    [14] WU L T, WANG D, SU Z Z, et al. Analytical model of radial permanent magnet biased magnetic bearing with assist poles[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 0610105.1-0610105.5.
    [15] ZHONG Y L, WU L J, HUANG X Y, et al. An improved magnetic circuit model of a 3-DOF magnetic bearing considering leakage and cross-coupling effects[J]. IEEE Transactions on Magnetics, 2017, 53(11): 8002506.1-8002506.6.
    [16] 周扬,周瑾,王艺宇,等. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报,2024,59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510

    ZHOU Yang, ZHOU Jin, WANG Yiyu, et al. Modeling and robust control of magnetic bearing-rotor system considering interface contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [17] XU S L, SUN J J. Decoupling structure for heteropolar permanent magnet biased radial magnetic bearing with subsidiary air-gap[J]. IEEE Transactions on Magnetics, 2014, 50(8): 8300208.1-8300208.8.
    [18] OKADA Y, SAGAWA K, SUZUKI E, et al. Development and application of parallel PM type hybrid magnetic bearings[J]. Journal of System Design and Dynamics, 2009, 3(4): 530-539. doi: 10.1299/jsdd.3.530
    [19] 孙津济,房建成,王曦,等. 一种新型结构的永磁偏置径向磁轴承[J]. 电工技术学报,2009,24(11): 53-60. doi: 10.3321/j.issn:1000-6753.2009.11.009

    SUN Jinji, FANG Jiancheng, WANG Xi, et al. A new permanent magnet biased radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2009, 24(11): 53-60. doi: 10.3321/j.issn:1000-6753.2009.11.009
    [20] ZHU R Z, XU W, YE C Y, et al. Design optimization of a novel heteropolar radial hybrid magnetic bearing using magnetic circuit model[J]. IEEE Transactions on Magnetics, 2018, 54(3): 8201105.1-8201105.5.
    [21] 钟志贤,蔡忠侯,祁雁英,等. 新型径向混合磁轴承的解耦设计与分析[J]. 中国电机工程学报,2022,42(4): 1596-1606.

    ZHONG Zhixian, CAI Zhonghou, QI Yanying, et al. Decoupling design and analysis of a new radial hybrid magnetic bearing[J]. Proceedings of the CSEE, 2022, 42(4): 1596-1606.
    [22] KENNY A, PALAZZOLO A B. Single plane radial, magnetic bearings biased with poles containing permanent magnets[J]. Journal of Mechanical Design, 2003, 125(1): 178-185. doi: 10.1115/1.1541630
    [23] LEE A C, HSIAO F Z, KO D. Analysis and testing of magnetic bearing with permanent magnets for bias[J]. JSME International Journal, 1994, 37(4): 774-782
    [24] LEE A C, HSIAO F Z, KO D. Performance limits of permanent-magnet-biased magnetic bearings[J]. JSME International Journal, 1994, 37(4): 783-794.
    [25] 王宝龄. 电磁电器设计基础[M]. 修订本. 北京:国防工业出版社,1989.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-09-26
  • 网络出版日期:  2025-03-11

目录

    /

    返回文章
    返回