• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于模糊贝叶斯网络的隧道围岩富水破碎风险分析方法

朱庆 郑威鹏 吴浩宇 丁雨淋 郭永欣 王强 刘利 张骏骁

朱庆, 郑威鹏, 吴浩宇, 丁雨淋, 郭永欣, 王强, 刘利, 张骏骁. 基于模糊贝叶斯网络的隧道围岩富水破碎风险分析方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230397
引用本文: 朱庆, 郑威鹏, 吴浩宇, 丁雨淋, 郭永欣, 王强, 刘利, 张骏骁. 基于模糊贝叶斯网络的隧道围岩富水破碎风险分析方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230397
ZHU Qing, ZHENG Weipeng, WU Haoyu, DING Yulin, GUO Yongxin, WANG Qiang, LIU Li, ZHANG Junxiao. Analysis Method for Water-Rich and Fractured Risks in Tunnel Surrounding Rock Based on Fuzzy Bayesian Network[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230397
Citation: ZHU Qing, ZHENG Weipeng, WU Haoyu, DING Yulin, GUO Yongxin, WANG Qiang, LIU Li, ZHANG Junxiao. Analysis Method for Water-Rich and Fractured Risks in Tunnel Surrounding Rock Based on Fuzzy Bayesian Network[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230397

基于模糊贝叶斯网络的隧道围岩富水破碎风险分析方法

doi: 10.3969/j.issn.0258-2724.20230397
基金项目: 国家重点研发计划(2022YFB3904103);国家自然科学基金项目(42001336);国家铁路集团重大课题(K2021G027);成都市重点研发支撑计划(2022YF0800001GX)
详细信息
    作者简介:

    朱庆(1966—),男,教授,博士,博士生导师,研究方向为地理信息系统,E-mail:zhuq66@263.net

    通讯作者:

    丁雨淋,教授,博士,博士生导师,研究方向包括灾害模拟评估,大数据分析等,E-mail:rainforests@126.com

  • 中图分类号: P631.84

Analysis Method for Water-Rich and Fractured Risks in Tunnel Surrounding Rock Based on Fuzzy Bayesian Network

  • 摘要:

    富水破碎不良地质区在隧道施工中容易诱发涌水灾害,为准确分析隧道围岩的富水破碎风险,且满足自动化、定量化风险分析需求,基于开挖数据构建模糊贝叶斯网络风险评估模型,通过隶属函数量化地质参数的不确定性,并结合贝叶斯概率推理,融合隧道地震预报法与瞬变电磁法的探测数据,得到围岩富水破碎风险概率;进一步利用三维体素模型将风险概率映射至三维坐标,可视化表达风险的空间分布特征. 选取典型长大深埋隧道进行实验分析,结果表明:评估模型对地下水情况与岩体完整性分类准确率分别为80.91%和82.81%,且不受数据完备性限制,能够在单一或多源数据条件下完成定量分析;所建三维体素模型为风险防控提供有效参考,其中,相较于单一数据,多源数据融合分析结果与现场揭露的富水区、破碎带位置吻合度更高.

     

  • 图 1  隧道围岩富水破碎风险分析方法流程

    Figure 1.  Analysis method flowchart for water-rich and fractured risks in tunnel surrounding rock

    图 2  围岩富水破碎风险评估模糊贝叶斯网络结构

    Figure 2.  Fuzzy Bayesian network topology for assessment of water-rich and fractured risks in surrounding rock

    图 3  各地球物理参数体素模型

    Figure 3.  Voxel models of geophysical parameters

    图 4  围岩富水破碎风险评估模型

    Figure 4.  Assessment model for water-rich and fractured risks in surrounding rock

    图 5  各变量模糊集

    Figure 5.  Fuzzy sets of each variable

    图 6  地下水情况与岩体完整性分类精确率、召回率和F值

    Figure 6.  Precision, recall, and F-measure of groundwater condition and rock mass integrity classification

    图 7  实际隧道围岩富水破碎情况与三维建模结果

    Figure 7.  Actual water-rich and fractured conditions in surrounding rock and results of three-dimensional modeling

    表  1  各指标变量富水破碎围岩响应特征

    Table  1.   Water-rich and fractured response features in surrounding rock of each indicator variable

    数据源 指标变量 富水围岩响应特征 破碎围岩响应特征
    TSP 纵波速度 岩体含水影响纵波传递,含水量越高,波速越低[16]  岩体完整性显著影响纵波传递,岩体破碎导致传播路径不规律,表现出较低的波速[17-18]
    横波速度  水体对横波传递抑制作用明显,横波从干燥岩体进入富水岩体,速度将显著降低[5, 16]  岩体完整性影响横波传递,岩体破碎导致传播路径不规律,表现出较低的波速[16]
    泊松比  水分影响岩体的弹性性质,通常情况下,含水量较高的岩体表现出较高的泊松比[5]  岩体完整性影响岩体的弹性性质,通常情况下,高孔隙率的破碎岩体具有较高的泊松比[17]
    TEM 视电阻率  岩体中的水分作为导电体,对视电阻率有显著影响,含水量越高,视电阻率越低[5, 6, 18]  岩体完整性影响视电阻率,破碎岩体更多的孔隙和裂隙,通常允许电流更容易通过,从而表现出较低的视电阻率[6]
    下载: 导出CSV

    表  2  各评价隶属函数类型

    Table  2.   Membership function types of each evaluation

    变量类型评价隶属函数类型
    指标变量S形函数
    双高斯函数
    Z形函数
    目标变量富水/破碎阶梯形函数
    下载: 导出CSV

    表  3  岩体完整性与地下水情况变量敏感性分析结果

    Table  3.   Sensitivity analysis results of rock mass integrity and groundwater condition variables

    影响程度排序 地下水情况 岩体完整性
    评估指标 MI 评估指标 MI
    1 视电阻率 0.40 纵波速度 0.67
    2 横波速度 0.21 横波速度 0.50
    3 泊松比 0.15 泊松比 0.27
    4 纵波速度 0.12 视电阻率 0.17
    下载: 导出CSV
  • [1] 薛翊国,孔凡猛,杨为民,等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3): 445-468.

    XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468.
    [2] 邵珠山,张鹏举,张喆,等. 隧道施工超前地质预报研究进展[J]. 长江科学院院报,2022,39(1): 70-77,85. doi: 10.11988/ckyyb.20200874

    SHAO Zhushan, ZHANG Pengju, ZHANG Zhe, et al. Research progress of advanced geological prediction in tunnel construction[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 70-77,85. doi: 10.11988/ckyyb.20200874
    [3] 徐正宣,张利国,蒋良文,等. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术,2021(3): 29-42.

    XU Zhengxuan, ZHANG Liguo, JIANG Liangwen, et al. Engineering geological environment and main engineering geological problems of Ya’an: Linzhi section of the Sichuan—Tibet railway[J]. Advanced Engineering Sciences, 2021(3): 29-42.
    [4] LI S C, LIU B, XU X J, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology, 2017, 63: 69-94. doi: 10.1016/j.tust.2016.12.011
    [5] DING Y L, YANG B R, XU G C, et al. Improved dempster–shafer evidence theory for tunnel water inrush risk analysis based on fuzzy identification factors of multi-source geophysical data[J]. Remote Sensing, 2022, 14(23): 6178.1-6178.19.
    [6] LIU B, FAN K R, NIE L C, et al. Mapping water-abundant zones using transient electromagnetic and seismic methods when tunneling through fractured granite in the Qinling Mountains, China[J]. Geophysics, 2020, 85(4): B147-B159. doi: 10.1190/geo2019-0067.1
    [7] LU X L, HU X Q, XU Z Y, et al. Tunnel concealed Karst cave joint detection by tunnel seismic and transient electromagnetic[J]. Lithosphere, 2022, 2022(1): 2827582.1-2827582.13.
    [8] ZHANG Y, YAN X L, YANG L. Application of multiple geophysical prospecting methods and high precision survey in expressway construction[C]// International Conference on Geographic Information and Remote Sensing Technology (GIRST 2022). Kunming: SPIE, 2023: 445-452.
    [9] TSOKAS G N, TSOURLOS P I, KIM J H, et al. Assessing the condition of the rock mass over the tunnel of eupalinus in Samos (Greece) using both conventional geophysical methods and surface to tunnel electrical resistivity tomography[J]. Archaeological Prospection, 2014, 21(4): 277-291. doi: 10.1002/arp.1489
    [10] CHEN L, ZHANG F K, REN Y X, et al. Tunnel prospecting based on integrated interpretation of geophysical data: Xiangyun tunnel, Yunnan Province, China[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(1): 63-75. doi: 10.2113/JEEG24.1.63
    [11] MA J J, LI T B, LI X, et al. A probability prediction method for the classification of surrounding rock quality of tunnels with incomplete data using Bayesian networks[J]. Scientific Reports, 2022, 12: 19846.1-19846.19.
    [12] WANG Y C, LIU Y, LI Z Y, et al. A new Bayesian network model for the risk assessment of water inrush in Karst tunnels[J]. Geofluids, 2022, 2022(1): 5697710.1-5697710.12.
    [13] BU L, LI S C, SHI S S, et al. Application of the comprehensive forecast system for water-bearing structures in a Karst tunnel: a case study[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 357-373. doi: 10.1007/s10064-017-1114-4
    [14] 晏雁. 瞬变电磁三维成像在煤矿含水体探测中的应用[J]. 工程地球物理学报,2023,20(1): 43-49. doi: 10.3969/j.issn.1672-7940.2023.01.006

    YAN Yan. Application of TEM 3D imaging in water content detection of coal mine[J]. Chinese Journal of Engineering Geophysics, 2023, 20(1): 43-49. doi: 10.3969/j.issn.1672-7940.2023.01.006
    [15] TANG H, LIU S. Basic theory of fuzzy Bayesian networks and its application in machinery fault diagnosis[C]//Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). Haikou: IEEE, 2007: 132-137.
    [16] 许振浩,李术才,张庆松,等. TSP超前地质预报地震波反射特性研究[J]. 地下空间与工程学报,2008,4(4): 640-644,716. doi: 10.3969/j.issn.1673-0836.2008.04.010

    XU Zhenhao, LI Shucai, ZHANG Qingsong, et al. Reflection characteristic of seismic wave in TSP advance geological prediction[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(4): 640-644,716. doi: 10.3969/j.issn.1673-0836.2008.04.010
    [17] 中华人民共和国住房和城乡建设部. 工程岩体分级标准:GB/T 50218—2014[S]. 北京:中国计划出版社,2015.
    [18] 李天斌,孟陆波,朱劲,等. 隧道超前地质预报综合分析方法[J]. 岩石力学与工程学报,2009,28(12): 2429-2436. doi: 10.3321/j.issn:1000-6915.2009.12.007

    LI Tianbin, MENG Lubo, ZHU Jin, et al. Comprehensive analysis method for advanced forecast of geology in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2429-2436. doi: 10.3321/j.issn:1000-6915.2009.12.007
    [19] FAYYAD U M, IRANI K B. Multi-interval discretization of continuous-valued attributes for classification learning[C]//International Joint Conferences on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc. , 1993: 1022-1029.
    [20] REED E, MENGSHOEL O J, REED E, et al. Bayesian network parameter learning using EM with parameter sharing[C]//Proceedings of the Eleventh UAI Conference on Bayesian Modeling Applications Workshop. Quebec: ACM, 2014: 48-59.
    [21] ZIMMERMANN H J. Fuzzy set theory[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(3): 317-332. doi: 10.1002/wics.82
    [22] 熊艳艳,吴先球. 粗大误差四种判别准则的比较和应用[J]. 大学物理实验,2010,23(1): 66-68. doi: 10.3969/j.issn.1007-2934.2010.01.022

    XIONG Yanyan, WU Xianqiu. The generalizing application of four judging criterions for gross errors[J]. Physical Experiment of College, 2010, 23(1): 66-68. doi: 10.3969/j.issn.1007-2934.2010.01.022
    [23] BOSCH D, LEDO J, QUERALT P. Fuzzy logic determination of lithologies from well log data: application to the KTB project data set (Germany)[J]. Surveys in Geophysics, 2013, 34(4): 413-439. doi: 10.1007/s10712-013-9242-2
    [24] 冷彪,张毅,杨辉,等. 隧道掌子面岩体裂隙快速识别方法[J]. 西南交通大学学报,2021,56(2): 246-252,322.

    LENG Biao, ZHANG Yi, YANG Hui, et al. Rapid recognition of rock mass fractures in tunnel faces[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 246-252,322.
    [25] DAS M, GHOSH S K. Advanced Bayesian network models with fuzzy extension[M]//Enhanced Bayesian Network Models for Spatial Time Series Prediction. Cham: Springer International Publishing, 2019: 101-113.
    [26] DAS M, GHOSH S K. Data-driven approaches for meteorological time series prediction: a comparative study of the state-of-the-art computational intelligence techniques[J]. Pattern Recognition Letters, 2018, 105: 155-164. doi: 10.1016/j.patrec.2017.08.009
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  31
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2023-11-06
  • 网络出版日期:  2025-04-21

目录

    /

    返回文章
    返回