Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于分段惩罚参数SVM算法的锂电池失效识别

金辉 胡寅逍 葛红娟 刘薇薇 李炳浩 李文臣 桑益芹

杨彬, 胡晋铭, 张其林, 汪丛军. 基于行人重识别的施工现场人员位置信息感知[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230125
引用本文: 金辉, 胡寅逍, 葛红娟, 刘薇薇, 李炳浩, 李文臣, 桑益芹. 基于分段惩罚参数SVM算法的锂电池失效识别[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230287
YANG bin, HU Jinming, ZHANG Qilin, WANG Congjun. Location Information Perception of Onsite Construction Crew Based on Person Re-identification[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230125
Citation: JIN Hui, HU Yinxiao, GE Hongjuan, LIU Weiwei, LI Binghao, LI Wenchen, SANG Yiqin. Lithium-Ion Battery Failure Identification Based on Segmented Penalty Parameter Support Vector Machine Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230287

基于分段惩罚参数SVM算法的锂电池失效识别

doi: 10.3969/j.issn.0258-2724.20230287
基金项目: 国家基金委民航联合基金项目(U2233205,U2133203)
详细信息
    作者简介:

    金辉(1998—),男,博士研究生,研究方向为机载设备安全性,E-mail:jin_hui@nuaa.edu.cn

    通讯作者:

    葛红娟(1966—),女,教授,博士,研究方向为航空电源系统设计、验证与安全性评估,E-mail:allenge@nuaa.edu.cn

  • 中图分类号: U262.44

Lithium-Ion Battery Failure Identification Based on Segmented Penalty Parameter Support Vector Machine Algorithm

  • 摘要:

    在机载锂电池失效识别等样本不平衡的应用场景中,支持向量机(support vector machine,SVM)算法存在分离超平面偏移的问题,为此,提出分段惩罚参数支持向量机(segmented penalty parameters support vector machine,SPP-SVM)算法. 该算法在训练过程中对样本进行分段,并根据各段内样本的识别误差自动调整惩罚参数,从而抑制超平面偏移;基于容量增量分析和灰色关联分析等方法提取并筛选特征,进而基于SPP-SVM算法建立锂电池失效识别模型;以NASA锂电池数据集和加州大学欧文分校(University of California Irvine,UCI)数据集为对象,开展对比实验. 研究结果表明:与结合寻优算法的SVM相比,SPP-SVM算法识别性能更好,在不平衡程度较大的锂电池数据上,F1值提升11.7%;在锂电池数据集和UCI数据集上的训练耗时减少了10倍以上;证明在样本不平衡情况下,使用SPP-SVM算法能够有效抑制分离超平面偏移,提升识别效果.

     

  • 感知施工现场人员的位置信息、进行施工现场实体的追踪定位,能够为生产力分析、安全管理提供基础数据[1]. 相比基于无线电的方法定位,如无线电射频识别(RFID)、超宽带(UWB)和基于传感器的全球定位系统(GPS),基于计算机视觉的位置信息采集技术有成本低、无接触、效率高等优点[1-3].

    基于计算机视觉的施工实体追踪与定位研究多采用手工设计的图像特征(如梯度直方图和色彩直方图)进行目标检测和数据关联[1-2,4]. 数据关联即为目标检测结果分配ID,完成对目标的持续追踪. 相比基于深度学习的特征,手工设计特征是较为浅层的特征,鲁棒性差. 因此,Son等[5]使用深度残差网络作为主干网络进行特征提取,实现高精度的施工现场人员检测. Son等[3]使用YOLOv4[6]进行目标检测,并利用基准卷积神经网络对检测结果进行特征提取以实现目标匹配. Angah等[7]利用Mask RCNN (region-based convolutional neural networks)[8]作为检测器,并使用不同基准卷积网络进行特征提取,完成施工人员的匹配. Zhang等[9]利用行人重识别深度特征实现跨摄像头的施工现场人员匹配.

    行人重识别原是多目标多摄像头追踪的子任务,后来分离成为独立的研究方向,旨在利用目标图像实现行人跨时空的准确检索[10-11]. 上述人员追踪研究都仅仅将行人重识别方法用作特征提取器,并没有充分挖掘特征序列彼此之间的关联,以实现更准确的目标匹配;另一方面,行人重识别研究针对的场景大多为普通行人场景,相较之下,施工场景背景复杂、人员姿势丰富、着装更为相似、遮挡重叠更为严重,依靠外观特征进行匹配容易产生错误匹配,需要针对施工场景提出优化机制.

    本文采用YOLOv5算法进行目标检测,并提出一种基于行人重识别的数据关联方法,以实现对施工人员的视觉追踪. 该方法包括基于重排序的距离度量技术,能够考虑深度特征之间的关联性,从而增强对难样本的识别能力. 此外,还引入一种后处理机制,结合缓冲机制和特征动态更新,旨在优化匹配结果,充分考虑施工环境的动态性、复杂性及人员着装的相似性,以提高追踪的准确性. 在视觉追踪的基础上,运用图像透视变换实现对施工人员在现场的真实2D坐标及运动信息的持续感知,为生产力分析提供基础数据.

    算法由3个模块组成:目标检测、数据关联、坐标获取. 目标检测能够完成大类目标(如人员、机具、材料等)的识别与初步定位,但并不能实现大类下个体之间的区分,以及视频帧与帧之间目标的辨别. 因此,在目标检测的基础上进行数据关联,为被检测出的对象分配ID,实现目标的视觉追踪. 本文以行人重识别的视角建立了一种数据关联方法,每一帧通过目标检测网络输出的目标称为待检目标(query),这些目标需要和人员图像库(gallery,以下简称库)中的若干对象进行匹配,以为其分配ID. 完成数据关联后,基于图像透视变换完成施工人员现场真实位置信息获取,并结合帧率信息获取如运动距离、速度、时间等的基础生产力分析数据. 算法流程如图1所示,图中,qi为第i个待检目标,gj为库中第j个对象(库中储存图像是由深度网络提取到的深度特征而非直接存储图像,故称其为对象).

    图  1  算法流程示意
    Figure  1.  Algorithm process

    采用基于深度学习的单阶段目标检测方法YOLOv5[12],该方法是单阶段算法YOLO系列的第5版,为目前主流的单阶段算法之一. 实际采用YOLOv5l网络架构,并利用An等[13]提出的施工现场数据集,提取其中包含工人的部分图片和对应的标注信息,结合现场采集的图片,构建训练集以及验证集,其中,训练集6085张图片,验证集1522张图片.

    训练初始学习率为3.2 × 10-3,最终OneCycle学习率为0.12,动量为0.853,权重衰减为3.6 × 10-4,训练轮数为400轮,每轮样本数为16个. 训练目标框损失变化情况见图2. 在验证集中,训练后的网络检测平均精度均值(mean average precision,mAP)达到87.5%.

    图  2  目标检测网络目标框损失变化曲线
    Figure  2.  Target frame loss curves of target detection network

    通过基于深度学习的行人重识别网络提取代表目标外观特征的特征向量,利用特征向量之间的欧氏距离进行度量和对比,从而实现对施工现场不同工人的识别,并在遮挡和重叠情况下有效“重识别”同一目标.

    采用Luo等[14]提出的基准网络,如图3所示. 图中,GAP、BN、FC分别为全局平均池化层、批正则化层、全连接层. 网络的输出ID用于训练,而特征向量则用于推理和模型训练. 在测试阶段,使用在行人重识别标准数据集Market1501[15]上预训练的模型.

    图  3  行人重识别算法网络结构
    Figure  3.  Network structure of person re-identification algorithm

    将待检测目标与数据库中所有对象进行欧氏距离度量,并按距离从小到大对对象进行排序,生成初始序列,如式(1)所示. 在这个序列中,靠前的对象与待检测目标越相似,则为该待检测目标分配序列中第1个对象对应的ID.

    L0(qi)={g1,g2,,gJ},d1(qi,gj)<d1(qi,gj+1),j=1,2,,J1, (1)
    d1(qi,gj)=fqi,fgj2, (2)

    式中:$ d_{1}\left(q_{i}, g_{j}\right) $为qigj间的欧氏距离,J为库中对象数,$ {\boldsymbol{f}}_{qi} $和$ {\boldsymbol{f}}_{gj} $分别为qigj对应的特征向量.

    施工场景下人员穿着相似,排序靠前对象可能并非该待检目标的正确配对. 此外,ID分配仅考虑了外观特征的相似度,所构建序列的排序信息未得到充分利用,而目标和对象若属于同一ID,则二者的近邻之间有较高的相似度[16]. 为此,引入行人重识别研究中的重排序(re-ranking)概念,针对数据关联任务,提出一种基于k最邻近的重排序方法,并对重排序后的序列进行特征局部扩展,以获得更为鲁棒的特征表示,从而生成最终的优化序列,以提高算法在施工人员外观相似情况下的匹配准确性,如图4所示. 图中,gj右侧括号内的$ h_{p}^{(l)} $表示序列中对象gj的真实ID为l,并且在排序中是序列中第p个ID为l的对象,$ L_{1}\left(q_{i}\right) $、$ L_{*}\left(q_{i}\right) $分别为经过k最邻近重排序后的序列(优化序列1)和最终匹配序列,$ N\left(g_{j}, k\right) $为库中对象gjk最邻近集(定义见3.1.1节),$ q_{i}^{*} $为特征局部扩展后的待检目标.

    图  4  重排序示意
    Figure  4.  Re-ranking
    3.1.1   基于k最邻近的重排序

    取待检目标的k最邻近集$ N\left(q_{i}, k\right) $,也即初始匹配序列$ L_{0}\left(q_{i}\right) $中的前k项中满足距离阈值要求的对象集,如式(3)所示. 其中,k取值见式(4). 使用同样的方法,对$ N\left(q_{i}, k\right) $中每个对象计算其k最邻近对象集$ N\left(g_{j}, k\right) $(排除该对象本身). 基于建立好的近邻集,利用Jaccard距离[17],计算待检目标与其k最邻近集中对象的邻近距离$ d_{2}\left(q_{i}, g_{j}\right) $,表征集合间的相似度,如式(5)所示,对于待检目标的非k最邻近对象,该值取1. 采用欧氏距离与最邻近距离加权获得重排序后的序列,如式(6)所示,其中距离的计算见式(7).

    N(qi,k)={g1,g2,,gk},gjL0(qi), (3)
    k=min (4)
    d_2\left(q_i, g_j\right)=\left\{\begin{array}{l} 1-\dfrac{N\left(q_i, k\right) \cap N\left(g_j, k\right)}{N\left(q_i, k\right) \cup N\left(g_j, k\right)},\quad j \leqslant k, \\ 1,\quad j \gt k \end{array}\right. (5)
    \begin{split} & L_1\left(q_i\right)=\left\{g_1, g_2, \cdots, g_J\right\}, \quad d\left(q_i, g_j\right) \lt d\left(q_i, g_{j + 1}\right), \\&\quad j=1,2, \cdots, J-1, \end{split} (6)
    d\left(q_i, g_j\right)=\left(1-\lambda_1\right) d_1\left(q_i, g_j\right) + \lambda_1 d_2\left(q_i, g_j\right), (7)

    式中:$ k_{0} $为设定的邻近数,$ d_{0} $为一距离阈值,$ \lambda_{1} $为近邻距离权重.

    3.1.2   特征局部扩展

    将待检目标本身的图像特征向量与重排序后序列的前$ k_{{\mathrm{e}}} $个对象对应的图像特征向量进行加权,如式(8)所示,其中$ k_{{\mathrm{e}}} $的取值见式(9). 该加权方法考虑了排序信息,根据对象特征在排序中的位置进行该对象特征权重的调整,能够确保越相近的对象被赋予更高的权重. 利用扩展的特征向量再次进行距离度量,获取该待检目标的最终匹配序列,如式(10)所示.

    \boldsymbol{f}_{q_i}^*=\left(1-\lambda_2\right) \boldsymbol{f}_{q_i} + \lambda_2 \frac{\displaystyle\sum_{j=1}^{k_{\mathrm{e}}}\left(k_{\mathrm{e}}-j + 1\right) \boldsymbol{f}_{g_j}}{\displaystyle\sum_{j=1}^{k_{\mathrm{e}}}\left(k_{\mathrm{e}}-j + 1\right)}, (8)
    \begin{split} & k_{\mathrm{e}}=\min \left\{k_{{\mathrm{e}} 0}, \max (j)\right\},\quad d\left(q_i, g_j\right) \lt d_{{\mathrm{e}} 0}, \\&\quad j=1,2, \cdots, J, \end{split} (9)
    \begin{split} & L_*\left(q_i\right)=\left\{g_1, g_2, \cdots, g_J\right\}, \quad d_1\left(q_i^*, g_j\right)\lt d_1\left(q_i^*, g_{j + 1}\right), \\&\quad j=1,2, \cdots, J-1, \end{split} (10)

    式中:$ \lambda_{2} $为扩展权重,$ k_{{\mathrm{e}} 0} $为设定的扩展邻近数,$ d_{{\mathrm{e}}0} $为扩展距离阈值.

    匹配也即为待检目标分配ID. 跟行人重识别研究不同,数据关联任务中,每个待检目标获取的ID是唯一的,也即不存在多个待检目标被分配同一ID的情况,另外追踪过程中可能会出现此前库中没有的新目标,更类似于开放世界行人重识别任务[11]. 因此,为正确分配ID,不同于3.1节中仅度量待检目标与库中对象之间的距离,这里利用最终匹配序列$ L_{*}\left(q_{i}\right) $获取待检目标$ q_{i} $与库中ID间的距离. 计算所有待检目标与所有ID的距离以建立距离矩阵D,如式(11)所示.

    \boldsymbol{D}=\left(\begin{array}{cccccc} d_{11} & d_{12} & \cdots & d_{1 l} & \cdots & d_{1 n} \\ d_{21} & d_{22} & \cdots & d_{2 l} & \cdots & d_{2 n}\\ \vdots & \vdots & & \vdots & & \vdots \\ d_{i 1} & d_{i 2} & \cdots & d_{i l} & \cdots & d_{i n}\\ \vdots & \vdots & & \vdots & & \vdots \\ d_{m 1} & d_{m 2} & \cdots & d_{m l } & \cdots & d_{m n} \end{array}\right)_{m \times n}, (11)

    式中:$ d_{il} $为待检目标qi与$ L_{*}\left(q_{i}\right) $中ID为l的第1个对象间的欧式距离,也即$ d_{1}\left(q_{i}^{*}, h_{1}^{(l)}\right) $,mn分别为这一帧的待检目标数和库中所有ID数.

    基于建立好的距离矩阵,采用改进的Jonker-Volgenant方法[18]为每个待检目标分配ID. 对于被分配ID为l的待检目标qi,若dil小于匹配阈值,则认为匹配成功,为其分配对应的ID;否则认为出现了库中没有的新目标,为其分配新的ID;此外若m>n,则表示出现了库中没有的目标,为这些没有被匹配到的待检目标分配新ID.

    3.3.1   缓冲机制

    施工场景复杂,常常出现遮挡和姿态变化等情况,使得即使待检目标确实属于某一数据库ID,也可能面临匹配失败. 此外,目标检测过程中可能存在误检,如果此时错误地赋予新ID,将导致匹配错误和误判. 为解决这一问题,引入缓冲机制,如图5所示. 该机制通过建立一个缓冲库来类比原始库. 每一帧的待检目标首先与库进行匹配,如果匹配失败,则会与缓冲库进行匹配. 如果成功,则该特征将被添加到缓冲库中. 当缓冲库中对应ID的特征向量数量达到设定阈值时,会将该待检目标加入主库并赋予新ID. 如果仍然匹配失败,则在缓冲库中为该待检目标创建新ID并存储其特征向量. 同时,缓冲库中连续若干帧匹配失败的ID将被删除. 最终的追踪结果由两个部分贡献组成:一是与库中目标成功匹配的目标,二是缓冲库中满足特征向量数量要求的目标. 该缓冲机制提高了算法的容错性,从而减少了错误匹配的发生.

    图  5  匹配结果后处理方法示意
    Figure  5.  Post-processing method for matching results
    3.3.2   特征动态更新机制

    对于匹配成功的若干待检目标,计算其两两间目标框的交并比(2个矩形相交面积与相并面积之比),若任意一个待检目标与其余待检目标的目标框交并比均小于阈值,则认为不存在较大重叠,将该待检目标的图像特征存入库中对应ID下,若该ID特征数满足限值,则随机替换非初始图像特征,见图5. 由于库并不能无限储存特征,特征的动态更新确保库中始终保留与当前目标相近的图像特征,从而提高姿态变化情况下的追踪准确率,并有效避免库中出现重叠的图像特征,减少错误匹配的发生.

    上述目标追踪方法只能获取人员与ID对应的像素坐标,为获取现场真实位置信息,需要进行坐标变换. 假定所有施工人员均位于同一施工平面,则可忽略深度信息,通过透视变换获取目标在平面上的真实2D坐标[19]. 在变换前需对相机进行基本的畸变矫正,如图1,这里不再赘述其过程.

    图像透视变换本质是利用图像的单应性实现2D图像之间的映射,在变换前后直线仍为直线,效果见图6. 图像坐标系$ uov$通过透视变换转换为设定的$ u^{\prime} o^{\prime} v^{\prime} $坐标系,与结构图对应. 透视变换式见式(12). 为求解透视变换矩阵,需选择4对参考点,例如图6中的4个点柱节点,实际计算时可选择超过4个点,利用随机抽样一致法(random sample consensus,RANSAC)获得更鲁棒的结果.

    图  6  透视变换示意
    Figure  6.  Perspective transformation
    w(\begin{array}{l} x \quad y \quad 1 \end{array})^{\mathrm{T}}=\boldsymbol{A}_{3 \times 3}(\begin{array}{c} x_0 \quad y_0 \quad 1 \end{array})^{\mathrm{T}}, (12)

    式中:$ \left(x_{0}\;\;\; y_{0}\;\;\; 1\right)^{{\mathrm{T}}} $和$ (x\;\;\; y\;\;\; 1)^{{\mathrm{T}}} $分别为变换前、后对应点的齐次坐标(变换前坐标采用目标框底边中点像素坐标),$ w $为比例系数,$ {\boldsymbol{A}}_{3 \times 3} $为透视变换矩阵.

    获取坐标后,结合视频帧率可以分析人员的运动信息. 通过设置采样频率,计算指定区间内的平均移速,如果该速度满足阈值要求,则判定目标处于运动状态. 同时,更新目标的运动距离和时间.

    在上海市某房屋建筑施工现场收集视频资料,并从不同视角和施工阶段中选取了具有各种施工现场特点的视频,以制作标准测试视频用于算法测试. 其详细信息见表1. 所有视频均以25帧/s的速度拍摄,且大部分场景中目标的外观相似度较高. 算法测试的软硬件配置如表2所示.

    表  1  标准测试视频详细信息
    Table  1.  Details of standard test videos
    编号 主要施工活动 视角 帧数/帧 目标数/个 难点
    1 混凝土浇筑 平视 1479 10136 尺寸差异、遮挡
    2 结构测设 平视 769 4606 尺寸差异、遮挡
    3 混凝土浇筑 俯视 754 9803 夜间、遮挡
    4 结构测设 俯视 616 8101 小目标、遮挡
    5 钢筋绑扎 俯视 1230 26922 小目标、遮挡
    6 混凝土浇筑 俯视 704 8427 夜间、小目标
    7 混凝土模板搭设 俯视 1131 5656 姿态改变、背景复杂
    8 预制柱吊装 俯视 1374 11220 动态性强、遮挡
    9 预制板吊装 俯视 866 4221 动态性强、遮挡
    10 脚手架搭建 俯视 497 6853 背景复杂
    11 钢筋加工 俯视 632 3265 人员离开又重进入
    下载: 导出CSV 
    | 显示表格
    表  2  软硬件配置详情
    Table  2.  Software and hardware configuration
    项目 详情
    监控设备 6寸球机 型号:DS-2DC6423IW-AE
    CPU Intel(R) Core(TM) i9-10900X @3.70 GHz
    GPU NVIDIA GeForce GTX 2080 Ti
    操作系统 Ubuntu 20.04.3
    编程环境 Python 3.8.8
    深度学习框架 Pytorch 1.9.1 + cu102
    下载: 导出CSV 
    | 显示表格

    采用多目标追踪准确度(multiple object tracking accuracy,MOTA)和IDF1(ID的F1得分)对目标追踪效果进行评价,其计算分别如式(13)、(14)所示.

    A_{\mathrm{{MOT}}}=1-\frac{\displaystyle \sum_{t=1}^T\left(M_t + W_t + M_t\right)}{\displaystyle \sum_{t=1}^T G_t} \times 100{\text{%}}, (13)
    \begin{aligned} F_{{\mathrm{ID}}}=\frac{2}{1 / P + 1 / R} \times 100 {\text{%}}, \end{aligned} (14)

    式中:$ M_{t} $、$ W_{t} $、$ M_{t} $、$ G_{t} $分别为第$ t $帧中的漏检数、误检数、ID切换数、真实目标数;T为视频总帧数,反映追踪的稳定性;PR分别为ID的准确率和召回率,能够综合反映ID的准确性.

    按照实验结果选取参数配置:匹配阈值0.6,缓冲库图像特征限值15个,库中每个目标的特征数限值20个,交并比阈值0.8. 其余参数设置为:$ k_{0}=20 $个,$ d_{0}=1.0 $,$ \lambda_{1}=0.8 $,$ k_{{\mathrm{e}} 0}=10 $个,$ d_{{\mathrm{e}}0}=0.6 $,$ \lambda_{2}=0.5 $. 部分场景追踪效果如图7所示,算法运行平均帧率达到15.2帧/s.

    图  7  不同场景视觉追踪效果
    Figure  7.  Visual tracking results in different scenes

    为验证算法的有效性,在不同场景中和其他追踪算法进行对比,结果见表3. 在大部分场景下,本文算法获得了最好的结果,平均IDF1和MOTA分别为85.4%和75.4%.

    表  3  不同算法在标准测试视频中的结果(IDF1/MOTA,%)
    Table  3.  Performance of different algorithms on standard test videos (IDF1/MOTA, %)
    算法 场景 1 场景 2 场景 3 场景 4 场景 5 场景 6 场景 7 场景 8 场景 9 场景 10 场景 11
    DAN*[20] 61.5/65.8 44.2/55.4 66.8/67.8 79.2/77.9 73.1/61.5 78.9/81.3 95.3/86.4 76.7/84.2 78.6/81.3 65.5/59.0 93.5/96.2
    TraDeS[21] 43.4/27.0 32.2/21.2 8.2/5.3 10.4/-10.8 8.8/-6.8 40.3/28.8 4.2/2.6 30.2/36.2 5.4/-0.7 10.5/2.8 40.4/16.6
    FairMOT[22] 48.7/47.0 51.4/54.0 18.4/13.5 47.9/40.5 12.0/0 61.9/45 10.1/9.6 29.1/33.6 28.2/18.2 11.6/5.7 49.8/43.5
    Trackformer*[23] 61.7/55.3 49.8/44.4 29.5/23.0 58.0/54.5 37.2/22.7 68.7/58.9 40.6/24.1 36.7/52.3 32.8/30.6 37.5/38.1 83.8/95.7
    Unicorn[24] 61.4/57.5 70.5/64.0 13.2/4.6 62.6/46.9 20.1/16.4 72.5/66.3 3.2/3.4 54.6/58.7 34.3/29.2 40.4/34.2 81.7/79.9
    ByteTrack[25] 73.4/63.7 67.3/62.4 64.6/58.2 82.1/73.5 38.5/29.6 77.6/71.2 33.4/31.1 61.8/67.1 52.6/54.1 47.0/34.4 83.0/75.8
    本文算法* 78.0/66.0 73.3/57.1 82.4/67.8 87.2/77.7 78.0/63.1 89.1/81.6 97.8/95.6 91.8/84.8 90.5/81.5 73.8/58.3 97.5/96.4
      注:带*的方法使用了相同的目标检测结果,最优结果加粗表示.
    下载: 导出CSV 
    | 显示表格

    为评估本文提出的基于重排序的距离度量方法及匹配后处理优化机制对算法性能的影响,对比了不同架构下的实验结果,详见表4. 结果显示,包含重排序方法和匹配后处理优化机制(包括缓冲机制和动态更新机制)的算法,相比于去除这二者后的算法,平均提高了52.8%的IDF1和3.8%的MOTA.

    表  4  不同架构下追踪结果详情(IDF1/MOTA,%)
    Table  4.  Tracking results with different architectures (IDF1/MOTA, %)
    架构 场景 1 场景 2 场景 3 场景 4 场景 5 场景 6 场景 7 场景 8 场景 9 场景 10 场景 11
    完整 78.0/66.0 73.3/57.1 82.4/67.8 87.2/77.7 78.0/63.1 89.1/81.6 97.8/95.6 91.8/84.8 90.5/81.5 73.8/58.3 97.5/96.4
    无重排序 77.3/66.0 60.1/56.6 81.6/67.6 77.8/77.5 74.8/61.9 88.1/81.4 97.8/95.6 80.6/84.2 90.4/81.3 66.8/58.3 95.9/92.6
    无缓冲 76.9/66.0 56.8/55.6 79.3/68.0 81.5/77.9 76.0/61.5 87.1/81.6 97.8/95.6 91.3/84.2 89.5/81.0 72.8/59.1 96.0/96.4
    无动态更新 67.0/62.9 47.1/53.5 46.7/60.5 56.1/66.4 45.0/54.7 69.2/77.8 68.4/91.9 60.4/79.4 69.1/78.5 51.3/51.2 92.3/93.7
    仅动态更新 70.0/65.9 55.5/55.5 76.4/67.9 74.0/77.7 64.7/61.5 84.5/81.5 93.9/95.6 78.0/84.1 81.4/81.1 63.3/58.9 88.0/96.2
    仅缓冲 60.6/63.6 31.0/53.0 30.1/59.3 36.2/68.9 28.3/53.9 60.3/77.2 40.2/87.3 37.5/78.8 45.1/77.0 27.0/52.3 44.7/90.2
    仅重排序 63.0/63.9 45.0/54.6 38.8/64.4 41.5/72.6 36.8/56.6 64.0/79.9 58.3/92.4 52.8/80.3 69.5/77.8 38.3/55.8 63.2/94.0
    无优化方法 47.8/63.4 27.8/53.4 22.9/62.5 29.6/73.3 21.7/56.2 49.2/79.0 31.6/91.3 29.1/80.4 37.7/77.9 24.5/56.4 36.7/94.1
    下载: 导出CSV 
    | 显示表格

    施工场景动态性强,人员除了大量的反复移动之外,姿态相较于普通行人场景更为丰富. 在动态更新机制作用下,视频帧率足够高,即使目标处于运动状态,目标帧间的变化也较小,帧间特征较为相似,确保了持续准确的匹配;此外,动态更新还能对重叠的特征进行过滤,减小目标框重叠导致的错误匹配. 重排序通过考虑特征序列之间相似度,进一步增强待检目标与其对应ID的相似性,从而提高匹配的准确性. 缓冲机制则在目标特征变化匹配失败时发挥作用,避免立刻分配新的ID,虽然可能会带来部分漏检,但提升了长时间追踪下的准确性.

    在俯视视角下选择如图6所示的现场坐标系,利用柱中心点、梁梁节点中心点共9对参考点求解透视变换矩阵,得到施工人员的坐标和轨迹信息如图8,移动距离采样为每25帧一次,运动状态判定阈值为0.5 m,获得位置信息数据如表5,坐标精确到cm.

    图  8  完整位置信息感知效果
    Figure  8.  Result of comprehensive location information perception

    本文提出的方法在施工场景下获得较高的追踪准确度,提升追踪精度. 然后,在部分场景下仍存在漏检、误检、错误匹配等现象. 在小目标场景下(如图7(b)),目标检测易出现漏检,此时依靠后续数据关联并不能恢复目标框,而目标本身的行人外观特征也不明显,特别是目标处于蹲姿的情况下,易发生错误匹配. 此外,施工现场重叠较多,由其是在平视且目标穿着相似的情况下. 如图9,在场景2平视视角下,3个相似目标出现了严重重叠,甚至是完全遮挡. 在遮挡后视野中出现穿着相似的新目标会引起ID切换. 一般情况下,遮挡后可利用行人重识别特征进行“重识别”,但在严重重叠的情况下,目标检测可能失效,且因外观高度相似,重识别特征也难保证准确匹配.

    表  5  运动数据获取结果
    Table  5.  Attained movement data
    ID 移动距离/m 在场总时间/s 移动时间/s 平均速度/
    (m•s−1
    0 52.2 78.0 37.8 1.4
    1 12.3 78.0 9.0 1.4
    2 0.5 78.0 0.6 0.8
    3 7.0 77.8 7.0 1.0
    4 28.0 76.1 25.6 1.1
    5 17.4 33.5 16.6 1.0
    下载: 导出CSV 
    | 显示表格
    图  9  测试场景2中的错误匹配情况
    Figure  9.  Mismatch in scene 2

    为进一步改善追踪的效果,首先,针对小目标,可以优化目标检测网络以提升检测性能[26];其次,引入先验信息,例如根据现场布局或结构图纸预先标记可能的遮挡物,并预测重新出现的位置,同时结合多摄像头数据优化匹配结果;此外,还可考虑建立施工场景的行人重识别数据集,并融合多源数据进行开放世界人员重识别. 在算法效率方面,由于本文算法在有限硬件设备下未能实现实时图像处理,因此可以考虑采用轻量化行人重识别网络来提高算法的效率. 最后,本文基于图像透视变换获取了现场真实坐标,但由于施工现场动态性较强、人员密集,并没有对获取的精度进行检验,未来可考虑结合传感器等设备对坐标精度进行验证.

    1) 本文提出的基于行人重识别的方法能够在不同施工场景下进行准确的人员追踪,并获得现场真实坐标与运动信息,在测试视频中平均IDF1和MOTA分别达到85.4%和75.4%.

    2) 提出的基于重排序的距离度量方法对目标序列排序结果进行了优化,提高了目标间相似性度量的准确性,有效提升了追踪的准确度.

    3) 提出的包含缓冲机制和动态更新机制的匹配后处理方法充分考虑了施工场景的动态性、复杂性,能够有效减少由于重叠、遮挡等带来的错误匹配.

  • 图 1  锂电池数据集训练中分离超平面偏移

    Figure 1.  Hyperplane offset separation in lithium-ion battery dataset training

    图 2  SPP-SVM算法流程

    Figure 2.  SPP-SVM algorithm flow

    图 3  滤波后不同充电次数下的IC曲线

    Figure 3.  IC curve under different charging times after filtering

    图 4  训练中SVM与SPP-SVM各指标变化对比

    Figure 4.  Comparison of changes in each index between SVM and SPP-SVM during training

    图 5  不同分段程度下SPP-SVM训练过程指标变化

    Figure 5.  Index changes during SPP-SVM training process under different segmentation levels

    表  1  NASA实验所用锂电池参数

    Table  1.   Parameters of lithium-ion battery used in NASA experiments

    参数类型 参数值
    电池型号 18650
    最大充电截止电压/V 4.20
    最小放电截止电压/V 2.75
    额定电压/V 3.6
    出厂额定容量/(A·h) 2
    充电温度范围/℃ 0~45
    放电温度范围/℃ −20~60
    下载: 导出CSV

    表  2  锂电池数据集上识别效果

    Table  2.   Identification results on lithium-ion battery dataset

    算法 准确率 查准率 查全率 F1 误差率 耗时/s
    SVM 0.936 0.886 0.799 0.841 0.064 0.103
    GA-SVM 0.978 0.928 0.969 0.948 0.022 64.399
    PSO-SVM 0.978 0.928 0.969 0.948 0.022 24.424
    SPP-SVM 0.979 0.954 0.95 0.952 0.021 1.391
    下载: 导出CSV

    表  3  锂电池样本数据集T1上的识别效果

    Table  3.   Identification results on lithium-ion battery sample dataset T1

    算法 准确率 查准率 查全率 F1 误差率 耗时/s
    SVM 0.929 0.852 0.688 0.807 0.071 0.081
    GA-SVM 0.973 0.956 0.878 0.915 0.027 55.131
    PSO-SVM 0.966 0.898 0.898 0.898 0.034 21.994
    SPP-SVM 0.979 0.943 0.931 0.936 0.021 1.325
    下载: 导出CSV

    表  4  锂电池样本数据集T2上的识别效果

    Table  4.   Identification results on lithium-ion battery sample dataset T2

    算法 准确率 查准率 查全率 F1 误差率 耗时/s
    SVM 0.939 0 0 0 0.061 0.041
    GA-SVM 0.962 0.75 0.563 0.643 0.038 31.211
    PSO-SVM 0.962 0.75 0.563 0.643 0.038 12.407
    SPP-SVM 0.985 0.857 0.919 0.883 0.015 0.935
    下载: 导出CSV

    表  5  UCI数据集识别效果

    Table  5.   Identification results on UCI datasets

    数据集 算法 准确率 查准率 查全率 F1值 误差率 耗时/s
    Ionosphere
    b vs g
    (112 113)
    (112 113)
    SVM0.8860.9380.8330.8820.1140.075
    GA-SVM0.9431.0000.8410.9140.057403.936
    PSO-SVM0.9491.0000.8570.9230.05191.848
    SPP-SVM0.9500.9600.9000.9290.0502.833
    Abalone
    11 vs 16
    (244 34)
    (243 33)
    SVM0.8930000.1070.062
    GA-SVM0.8780.5000.5290.5140.122342.219
    PSO-SVM0.8780.5000.5290.5140.12298.610
    SPP-SVM0.9000.6240.6140.6190.1005.227
    Ecoli
    im vs pp
    (39 26)
    (38 26)
    SVM0.8090.7590.6790.7170.1910.014
    GA-SVM0.9080.8131.0000.8970.09217.118
    PSO-SVM0.9230.8890.9230.9060.0774.143
    SPP-SVM0.9400.9130.9420.9270.0600.368
    Monk2
    1 vs 2
    (104 64)
    (289 142)
    SVM0.6710000.3380.005
    GA-SVM0.8050.6490.8870.7500.195155.723
    PSO-SVM0.8210.6880.8380.7560.17952.762
    SPP-SVM0.8280.6950.8520.7660.1720.227
    Monk3
    1 vs 2
    (59 62)
    (227 204)
    SVM0.9120.8740.9510.9110.0880.002
    GA-SVM0.9610.9790.9360.9570.03959.241
    PSO-SVM0.9591.0000.9190.9580.04129.379
    SPP-SVM0.9630.9480.9750.9610.0370.095
    下载: 导出CSV
  • [1] 宋清超,陈家伟,蔡坤城,等. 多电飞机用燃料电池-蓄电池-超级电容混合供电系统的高可靠动态功率分配技术[J]. 电工技术学报,2022,37(2): 445-458.

    SONG Qingchao, CHEN Jiawei, CAI Kuncheng, et al. A highly reliable power allocation technology for the fuel cell-battery-supercapacitor hybrid power supply system of a more electric aircraft[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 445-458.
    [2] 盘朝奉,刘兵,陈龙,等. 锂离子电池温升特性分析及液冷结构设计[J]. 西南交通大学学报,2020,55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241

    PAN Chaofeng, LIU Bing, CHEN Long, et al. Temperature rise characteristic analysis and liquid cooling structure design of lithium battery[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241
    [3] National Transportation Safety Board, U. S. Auxiliary power unit battery fire, Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January7, 2013[R]. Washington DC: National Transportation Safety Board, 2014.
    [4] IEEE Power and Energy Society. IEEE recommended practice for maintenance, testing, and replacement of Valve-Regulated Lead-Acid (VRLA) batteries for stationary applications: IEEE 1188aTM—2014[S]. New York: Stationary Batteries Committee, 2014.
    [5] YANG Y L, CHEN S Y, CHEN T, et al. State of health assessment of lithium-ion batteries based on deep Gaussian process regression considering heterogeneous features[J]. Journal of Energy Storage, 2023, 61: 106797.1-106797.16.
    [6] YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015.1-128015.21.
    [7] WU L X, LIU K, PANG H, et al. Online SOC estimation based on simplified electrochemical model for lithium-ion batteries considering current bias[J]. Energies, 2021, 14(17): 5265.1-5265.12.
    [8] GENG Z Y, WANG S Y, LACEY M J, et al. Bridging physics-based and equivalent circuit models for lithium-ion batteries[J]. Electrochimica Acta, 2021, 372: 137829.1-137829.9.
    [9] 刘伟,杨耕,孟德越,等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报,2021,36(24): 5186-5200.

    LIU Wei, YANG Geng, MENG Deyue, et al. Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200.
    [10] ZHANG K, YIN J X, HE Y Z. Acoustic emission detection and analysis method for health status of lithium ion batteries[J]. Sensors, 2021, 21(3): 712.1-712.17.
    [11] 石伟杰,王海民. 基于锂离子电池热特性的SOH在线诊断模型研究[J]. 仪器仪表学报,2020,41(8): 206-216.

    SHI Weijie, WANG Haimin. On-line diagnosis model of SOH based on thermal characteristics of lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 206-216.
    [12] 张雪霞,高雨璇,陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报,2020,55(2): 417-427.

    ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427.
    [13] 吴祎. 锂离子电池健康评估及失效分析关键技术研究[D]. 南京:南京航空航天大学,2020.
    [14] 杨飞,郝晓莉,杨建,等. 基于多车型CNN-GRU性能预测模型的轨道状态评价[J]. 西南交通大学学报,2023,58(2): 322-331.

    YANG Fei, HAO Xiaoli, YANG Jian, et al. Track condition evaluation for multi-vehicle performance prediction model based on convolutional neural network and gated recurrent unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331.
    [15] AHMED H O A, YU Y X, WANG Q H, et al. Intelligent fault diagnosis framework for modular multilevel converters in HVDC transmission[J]. Sensors, 2022, 22(1): 362.1-362.23.
    [16] 张敏,蔡振宇,包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报,2019,54(3): 633-639,662. doi: 10.3969/j.issn.0258-2724.20170435

    ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639,662. doi: 10.3969/j.issn.0258-2724.20170435
    [17] ZHOU D, ZHUANG X, ZUO H F, et al. Deep learning-based approach for civil aircraft hazard identification and prediction[J]. IEEE Access, 2020, 8: 103665-103683. doi: 10.1109/ACCESS.2020.2997371
    [18] 由智超,高宏力,郭亮,等. 基于改进信息熵的直接刀具状态监测设备部署[J]. 西南交通大学学报,2024,59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025

    YOU Zhichao, GAO Hongli, GUO Liang, et al. Equipment deployment of direct tool-condition monitoring based on improved information entropy[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025
    [19] 夏英,刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报,2023,58(2): 340-347.

    XIA Ying, LIU Min. Traffic flow prediction based on spatial-temporal attention convolutional neural network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347.
    [20] 杨军,高志明,李金泰,等. 基于注意力机制的三维点云模型对应关系计算[J]. 西南交通大学学报,2024,59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682

    YANG Jun, GAO Zhiming, LI Jintai, et al. Correspondence calculation of three-dimensional point cloud model based on attention mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682
    [21] 王中豪,郭喜峰,杨星宇. 基于人工智能算法的隧道锚承载能力评价[J]. 西南交通大学学报,2021,56(3): 534-540.

    WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing capacity evaluation of tunnel-type anchorage based on artificial intelligent algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540.
    [22] Teledyne Company. Gill dry-charged lead-acid aircraft battery service manual: Q01-1120[EB/OL]. (2021-03-16)[2023-04-15]. http://www.gillbatteries.com.
    [23] 陈维荣,李锦程,李奇. 燃料电池小型车SOC动态调节的功率跟随控制策略[J]. 西南交通大学学报,2021,56(1): 197-205.

    CHEN Weirong, LI Jincheng, LI Qi. Power following control strategy of SOC dynamic adjustment for small fuel-cell cars[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 197-205.
    [24] 刘桓龙. 电液混合动力系统关键技术及能量管理研究综述[J]. 西南交通大学学报,2024,59(3): 600-614. doi: 10.3969/j.issn.0258-2724.20211011

    LIU Huanlong. Summary of research on key technologies and energy management of electro-hydraulic hybrid powertrain[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 600-614. doi: 10.3969/j.issn.0258-2724.20211011
    [25] ROSALES-PEREZ A, GARCIA S, HERRERA F. Handling imbalanced classification problems with support vector machines via evolutionary bilevel optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 4735-4747. doi: 10.1109/TCYB.2022.3163974
    [26] HUANG W C, LIU H Y, ZHANG Y, et al. Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM[J]. Applied Soft Computing, 2021, 109: 107541.1-107541.16.
    [27] 黄英,王拓,裴海俊,等. 基于运行工况和多分类支持向量机的柴油机共轨系统诊断方法[J]. 北京理工大学学报,2023,43(7): 719-725.

    HUANG Ying, WANG Tuo, PEI Haijun, et al. Diagnosis method of diesel common rail system based on operating conditions and multi-category support vector machine[J]. Transactions of Beijing Institute of Technology, 2023, 43(7): 719-725.
    [28] 张血琴,高润明,郭裕钧,等. 基于高光谱的复合绝缘子电晕老化状态评估[J]. 西南交通大学学报,2020,55(2): 442-449. doi: 10.3969/j.issn.0258-2724.20181062

    ZHANG Xueqin, GAO Runming, GUO Yujun, et al. Hyperspectral-based corona aging evaluation for composite insulators[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 442-449. doi: 10.3969/j.issn.0258-2724.20181062
    [29] WANG L M, QIAO S B, LU D, et al. State of health estimation of lithium-ion battery in wide temperature range via temperature-aging coupling mechanism analysis[J]. Journal of Energy Storage, 2022, 47: 103618.1-103618.10.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  25
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-10-25
  • 网络出版日期:  2025-02-21

目录

/

返回文章
返回