• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

路桥过渡段纵连轨道板纵向力分布特征与上拱机理分析

蔡小培 王昌昌 董博 陈泽林 张乾

蔡小培, 王昌昌, 董博, 陈泽林, 张乾. 路桥过渡段纵连轨道板纵向力分布特征与上拱机理分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230424
引用本文: 蔡小培, 王昌昌, 董博, 陈泽林, 张乾. 路桥过渡段纵连轨道板纵向力分布特征与上拱机理分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230424
CAI Xiaopei, WANG Changchang, DONG Bo, CHEN Zelin, ZHANG Qian. Analysis of Longitudinal Force Distribution Characteristics and Arching Mechanism of Longitudinally Connected Track Slabs in Bridge-Subgrade Transition Section[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230424
Citation: CAI Xiaopei, WANG Changchang, DONG Bo, CHEN Zelin, ZHANG Qian. Analysis of Longitudinal Force Distribution Characteristics and Arching Mechanism of Longitudinally Connected Track Slabs in Bridge-Subgrade Transition Section[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230424

路桥过渡段纵连轨道板纵向力分布特征与上拱机理分析

doi: 10.3969/j.issn.0258-2724.20230424
基金项目: 国家自然科学基金项目(52178405);京沪高速铁路股份有限公司科技研究项目(京沪科研-2020-13);中国国家铁路集团有限公司科技研究开发计划(K2022G038)
详细信息
    作者简介:

    蔡小培(1982—),男,教授,博士,研究方向为铁路轨道结构与轨道动力学,E-mail:xpcai@bjtu.edu.cn

  • 中图分类号: U213.21

Analysis of Longitudinal Force Distribution Characteristics and Arching Mechanism of Longitudinally Connected Track Slabs in Bridge-Subgrade Transition Section

  • 摘要:

    纵连板式无砟轨道在路桥过渡段区域力学行为复杂,且上拱病害频繁,以路桥过渡段 П 型端刺无砟轨道为研究对象,建立轨道-桥梁-端刺-路基一体化有限元模型,并引入双线性内聚力模型模拟板间及层间黏结关系,分析路桥过渡段纵连轨道板在不同温度荷载和端刺位移下的纵向力分布规律,并研究端刺应力敏感区域,即过渡段与支承层结合部的轨道板纵向应力特征以及结合部挤压变形与上拱变形的关系. 研究结果表明:在主端刺及过渡板与支承层结合部的轨道板纵向压应力水平最高,极端正温梯下的最大值为19.91 MPa,摩擦板及桥梁段较小,与端刺各结构组成的限位能力相对应;随着路基材料劣化脱空等病害发展,其纵向抵抗和层间摩阻不断降低,导致端刺纵向变形不断增加,端刺区轨道板的纵向应力降低,结合部支承层的纵向应力增加,当纵向变形达到6 mm时,结合部支承层的纵向压应力达到18.55 MPa,结构的压碎风险极高;结合部位的挤压上拱显著影响轨道结构板间和层间黏结状态,增加上拱病害的风险;研究成果可进一步优化和整治纵连板式无砟轨道过渡段病害,保障高铁安全平稳运行提供参考.

     

  • 图 1  纵连板式无砟轨道-桥梁-端刺-路基空间耦合模型

    Figure 1.  Spatial coupling model of longitudinally connected ballastless track slab-bridge-end spine-subgrade

    图 2  双线性内聚力牵引-分离关系

    Figure 2.  Bilinear cohesive force traction-separation relationship

    图 3  不同温度梯度条件下轨道板纵向应力

    Figure 3.  Longitudinal stress of track slab under different temperature gradient conditions

    图 4  端刺与轨道结构受力

    Figure 4.  End spine and track structure force

    图 5  端刺超限位移下轨道板纵向应力分布

    Figure 5.  Longitudinal stress distribution of track slab under over-limit displacement of end spine

    图 6  结合部变形与应力状况

    Figure 6.  Deformation and stress conditions of junction

    图 7  路桥过渡段现场工点状况

    Figure 7.  Site condition of subgrade-bridge transition section

    图 8  不同上拱幅值下宽窄接缝黏结损伤状况

    Figure 8.  Bonding damage status of wide and narrow joints under different arching amplitudes

    图 9  层间黏结破坏位置示意

    Figure 9.  Location of interlayer bonding damage

    图 10  不同上拱幅值下层间黏结损伤状况(变形放大100倍)

    Figure 10.  Bonding damage status between layers under different arching amplitudes (deformation magnified 100 times)

    表  1  路基模型计算参数

    Table  1.   Calculation parameters of subgrade model

    部件 密度/(kg•m−3 弹性模量/MPa 泊松比 黏聚力/(kN•m−2 剪切角/(°) 剪切膨胀角/(°)
    级配碎石 2200 200 0.20 35 30 5
    AB 组填料 2100 120 0.25 15 20 8
    下载: 导出CSV

    表  2  内聚力模型参数

    Table  2.   Cohesive force model parameters

    黏结界面 法向抗拉
    强度/MPa
    剪切强度/MPa 法向刚度/
    (MPa•mm−1
    切向刚度/
    (MPa•mm−1
    法向断裂
    能/(J•m2
    切向断裂
    能/(J•m2
    轨道板与宽窄接缝 1.700 1.600 500.0 150.0 35.00 15.20
    轨道板与 CA 砂浆层 1.792 0.956 716.8 62.9 25.24 18.70
    下载: 导出CSV

    表  3  模型验证计算结果对比

    Table  3.   Comparison of model verification and calculation results MPa

    来源 轨道板最大纵向应力 底座最大纵向应力
    文献[2] −20.11 −12.04
    文献[20] −19.80 −10.80
    本文计算结果 −19.05 −11.98
      注:本文纵向应力负值表示压应力.
    下载: 导出CSV
  • [1] CAI X P, LUO B C, ZHONG Y L, et al. Arching mechanism of the slab joints in CRTS Ⅱ slab track under high temperature conditions[J]. Engineering Failure Analysis, 2019, 98: 95-108. doi: 10.1016/j.engfailanal.2019.01.076
    [2] 张鹏飞. 复杂荷载条件下桥上CRTS Ⅱ型板式无砟轨道无缝线路纵向力研究[D]. 北京:北京交通大学,2018.
    [3] 戴公连,葛浩,刘文硕,等. 实测温度下大跨度桥上纵连无砟轨道受力研究[J]. 铁道工程学报,2017,34(5): 26-31,93.

    DAI Gonglian, GE Hao, LIU Wenshuo, et al. Analysis of longitudinally connected ballastless track on the high-speed railway long-span bridge based on the actual measured temperature[J]. Journal of Railway Engineering Society, 2017, 34(5): 26-31,93.
    [4] 徐庆元,张旭久. 高速铁路博格纵连板桥上无砟轨道纵向力学特性[J]. 中南大学学报(自然科学版),2009,40(2): 526-532.

    XU Qingyuan, ZHANG Xujiu. Longitudinal forces characteristic of Bogl longitudinal connected ballastless track on high-speed railway bridge[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 526-532.
    [5] ZHANG Q, CAI X P, ZHONG Y L, et al. Temperature field and thermal effects of the longitudinal connected slab track based on the measurement data and thermal-fluid-structure coupling analysis[J]. Construction and Building Materials, 2022, 343: 128121.1-128121.14.
    [6] 高亮,何宁,任西冲,等. 无砟轨道板端上拱变形影响规律研究[J]. 华中科技大学学报(自然科学版),2020,48(3): 92-97.

    GAO Liang, HE Ning, REN Xichong, et al. Research on effect law of arch deformation of ballastless track slab[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(3): 92-97.
    [7] 周凌宇,张广潮,余志武,等. 循环温度荷载下无砟轨道结构模型试验研究[J]. 铁道学报,2020,42(1): 82-88.

    ZHOU Lingyu, ZHANG Guangchao, YU Zhiwu, et al. Model experiments of ballastless track-bridge structure under cyclic temperature load[J]. Journal of the China Railway Society, 2020, 42(1): 82-88.
    [8] 钟垚,何越磊,路宏遥,等. 持续高温作用下CRTSⅡ型无砟轨道层间离缝分析[J]. 铁道科学与工程学报,2018,15(5): 1128-1133.

    ZHONG Yao, HE Yuelei, LU Hongyao, et al. Analysis of interface seam of CRTSⅡ slab track under sustained high temperature[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1128-1133.
    [9] 赵国堂,刘钰. CRTSⅡ型板式无砟轨道结构层间离缝机理研究[J]. 铁道学报,2020,42(7): 117-126.

    ZHAO Guotang, LIU Yu. Mechanism analysis of delamination of CRTS II slab ballastless track structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126.
    [10] 张乾,蔡小培,钟阳龙,等. 无砟轨道路基不均匀沉降区高速列车动力特性[J]. 西南交通大学学报,2023,58(1): 133-140. doi: 10.3969/j.issn.0258-2724.20210830

    ZHANG Qian, CAI Xiaopei, ZHONG Yanglong, et al. Dynamic characteristics of high-speed trains in differential subgrade settlement zone of ballastless track[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 133-140. doi: 10.3969/j.issn.0258-2724.20210830
    [11] 刘笑凯,刘学毅,肖杰灵,等. 温升作用下CRTSⅡ型板宽窄接缝受力及损伤分析[J]. 西南交通大学学报,2024,58(1): 273-280.

    LIU Xiaokai, LIU Xueyi, XIAO Jieling, etal. Analysis of internal forces and damage of broad-narrow joint of CRTSⅡ slab track under temperature rise[J]. Journal of Southwest Jiaotong University, 2024, 58(1): 273-280.
    [12] 张鹏飞,涂建,桂昊,等. 温梯荷载下桥上CRTSⅡ型板式无砟轨道的力学特性[J]. 西南交通大学学报,2021,56(5): 945-952.

    ZHANG Pengfei, TU Jian, GUI Hao, et al. Mechanical properties of CRTSⅡ slab ballastless track on bridge under temperature gradient loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952.
    [13] CUI X H, GUO G R, DU B W, et al. Effects of lateral differential settlement of the subgrade on deformation behavior and damage evolution of CRTS Ⅱ slab track[J]. Engineering Failure Analysis, 2021, 129: 105674.1-105674.18.
    [14] XU Y D, YAN D B, ZHU W J, et al. Study on the mechanical performance and interface damage of CRTS II slab track with debonding repairment[J]. Construction and Building Materials, 2020, 257: 119600.1-119600.16.
    [15] 王军,卢朝辉,张玄一,等. CRTSⅡ型轨道板/CA砂浆界面内聚力模型研究[J]. 工程力学,2022,39(9): 72-80,109. doi: 10.6052/j.issn.1000-4750.2021.05.0336

    WANG Jun, LU Chaohui, ZHANG Xuanyi, et al. Research on cohesive zone model of the interface between CRTS Ⅱ track slab and CA mortar[J]. Engineering Mechanics, 2022, 39(9): 72-80,109. doi: 10.6052/j.issn.1000-4750.2021.05.0336
    [16] LIU G Y, BAO H C, TANG K L. Damage prediction in notched fiber-reinforced composite laminates[J]. Composite Interfaces, 2016, 24(3): 279-290.
    [17] 刘学毅,苏成光,刘丹,等. 轨道板与砂浆粘结试验及内聚力模型参数研究[J]. 铁道工程学报,2017,34(3): 22-28. doi: 10.3969/j.issn.1006-2106.2017.03.005

    LIU Xueyi, SU Chengguang, LIU Dan, et al. Research on the bond properties between slab and CA mortar and the parameters study of cohesive model[J]. Journal of Railway Engineering Society, 2017, 34(3): 22-28. doi: 10.3969/j.issn.1006-2106.2017.03.005
    [18] ZHOU R, YUAN W H, LIU W B, et al. Thermal performance of CRTS Ⅱ slab track-bridge structure under extreme temperatures: numerical simulation[J]. Construction and Building Materials, 2023, 377: 131147.1-131147.13.
    [19] 钟阳龙,高亮,王璞,等 . 温度荷载下CRTSⅡ型轨道板与CA砂浆界面剪切破坏机理[J]. 工程力学,2018,35(2): 230-238.

    ZHONG Yanglong, GAO Liang, WANG Pu, et al, Mechanism of interfacial shear failure between CRTS Ⅱ slab and ca mortar under temperature loading[J]. Engineering Mechanics, 2018, 35(2): 230-238
    [20] 闫斌,程瑞琦,谢浩然,等. 极端温度作用下桥上CRTSⅡ型无砟轨道受力特性[J]. 铁道科学与工程学报,2021,18(4): 830-836.

    YAN Bin, CHENG Ruiqi, XIE Haoran, et al. Mechanical characteristics of CRTSⅡ ballastless track on bridge due to extreme temperature load[J]. Journal of Railway Science and Engineering, 2021, 18(4): 830-836.
    [21] 国家铁路局. 高速铁路设计规范:TB 10621—2014[S]. 北京:中国铁道出版社,2015.
    [22] YAN D B, XU Y, ZHU W J. Effects of debonding repairment on interfacial damage and thermal deformation of CRTS Ⅱ slab ballastless track[J]. Construction and Building Materials., 2023, 389: 131793.1-131793.13.
    [23] ZHONG Y L, GAO L, ZHANG Y R. Effect of daily changing temperature on the curling behavior and interface stress of slab track in construction stage[J]. Construction and Building Materials., 2018, 185: 638-647. doi: 10.1016/j.conbuildmat.2018.06.224
    [24] 朱永见,赵国堂,郑建. CRTS Ⅱ型板式无砟轨道层间离缝产生原因分析[J]. 铁道学报,2021,43(2): 111-117. doi: 10.3969/j.issn.1001-8360.2021.02.014

    ZHU Yongjian, ZHAO Guotang, ZHENG Jian. Analysis on causes of gap under CRTS Ⅱ slab ballastless track[J]. Journal of the China Railway Society, 2021, 43(2): 111-117. doi: 10.3969/j.issn.1001-8360.2021.02.014
    [25] SONG L, LIU H B, CUI C X, et al. Thermal deformation and interfacial separation of a CRTS Ⅱ slab ballastless track multilayer structure used in high-speed railways based on meteorological data[J]. Construction and Building Materials., 2020, 237: 117528.1-117528.16.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  24
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 录用日期:  2024-12-10
  • 修回日期:  2023-11-24
  • 网络出版日期:  2024-12-16

目录

    /

    返回文章
    返回