• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑相移补偿的磁浮列车长定子高频注入无传感控制方法

张雯柏 林国斌 康劲松 赵元哲 廖志明

张雯柏, 林国斌, 康劲松, 赵元哲, 廖志明. 考虑相移补偿的磁浮列车长定子高频注入无传感控制方法[J]. 西南交通大学学报, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
引用本文: 张雯柏, 林国斌, 康劲松, 赵元哲, 廖志明. 考虑相移补偿的磁浮列车长定子高频注入无传感控制方法[J]. 西南交通大学学报, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
Citation: ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310

考虑相移补偿的磁浮列车长定子高频注入无传感控制方法

doi: 10.3969/j.issn.0258-2724.20240310
基金项目: 国家自然科学基金项目(52202449,52232013)
详细信息
    作者简介:

    张雯柏(1990—),男,博士研究生,研究方向为高速磁浮磁驱控制系统,E-mail:zhangwenbai@tongji.edu.cn

    通讯作者:

    赵元哲(1987—),男,讲师,博士,研究方向为高速磁浮磁驱控制系统与电能质量分析,E-mail:yuanzhezhao@tongji.edu.cn

  • 中图分类号: TM359.4

Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation

  • 摘要:

    为研究高频注入响应电角度相移对磁浮列车低速控制精度的影响,考虑控制延时与采样延时对角度偏差滞后的约束关系,提出一种无传感估计角度偏差最小化寻优的补偿方法. 首先,建立高速磁浮长定子同步电机零低速高频方波信号注入模型,利用估计-实际-延时坐标系变换理论,构建高频响应电流模型;其次,通过分析大功率电传动系统中系统延时对角度偏差的影响,重构含估计角度相移偏差的高频响应电流模型;然后,设计离散化的估计角度偏差目标函数,提出采用考虑梯度变化的二分法在线计算系统延时与角度偏差;最后,通过磁浮电机低速试验平台验证算法. 试验结果表明:本文提出的考虑相移滞后补偿方法与未经补偿的无传感控制相比,当给定电流为20、21、22 A时,估计角度误差分别减小73.3%,70.4%和72.1%;当速度环给定速度为0.8、0.9、1.0 m/s时,估计角度误差分别减小67.9%、70.5%、75.5%,速度跟踪误差平均减小50%.

     

  • 图 1  常导高速磁浮直线长定子电机结构

    Figure 1.  Structure of linear LSM of high-speed EMS train

    图 2  考虑相移滞后影响的高频响应各坐标系

    Figure 2.  Coordinate system of high-frequency response by considering effect of phase shift lag

    图 3  考虑延时的相移滞后示意

    Figure 3.  Phase shift lag by considering delay

    图 4  考虑相位补偿的高频方波注入无传感控制框图

    Figure 4.  Sensorless control for HFSI by considering phase shift lag compensation

    图 5  考虑梯度变化的二分法延时计算结构

    Figure 5.  Bisection delay computational structure by considering gradient change

    图 6  基于二分法的延时与角度相移滞后计算流程

    Figure 6.  Flowchart of delay and angular phase shift lag based on bisection method

    图 7  试验平台与驱动控制平台

    Figure 7.  Test platform and drive control platform

    图 8  补偿前不同给定电流控制效果

    Figure 8.  Control effect of different set currents before compensation

    图 9  补偿后不同给定电流控制效果

    Figure 9.  Control effect of different set currents after compensation

    图 10  补偿前不同给定速度控制效果

    Figure 10.  Control effect of different set speeds before compensation

    图 11  补偿后不同给定速度控制效果

    Figure 11.  Control effect of different set speeds after compensation

    表  1  磁浮电机试验平台主要参数

    Table  1.   Main parameters of maglev motor test platform

    参数 数值
    直流侧电压/V 220
    定子相电阻/Ω 0.12
    d 轴电感/mH 1.8
    q 轴电感/mH 1.4
    定子极距/mm 258
    动子极距/mm 266.5
    励磁电流/A 20~23
    动子励磁磁链/Wb 0.324 7
    下载: 导出CSV

    表  2  不同电流下补偿前、后误差最大波动

    Table  2.   Maximum fluctuation of error before and after compensation under different currents

    电流/A电角误差/rad电流误差/A电角波动变化/%电流波动变化/%
    补偿前补偿后补偿前补偿后
    200.860.237.57.573.30
    210.710.217.57.570.40
    220.680.197.57.572.10
    下载: 导出CSV

    表  3  不同速度下补偿前、后误差最大波动

    Table  3.   Maximum fluctuation of error before and after compensation under different speeds

    速度/(m·s−1电角误差/rad速度误差/(m·s−1电角波动变化/%电流波动变化/%
    补偿前补偿后补偿前补偿后
    0.80.530.170.360.2167.950
    0.90.510.150.360.2170.550
    1.00.490.120.360.2175.550
    下载: 导出CSV
  • [1] 丁叁叁. 时速600公里高速磁浮交通系统[M]. 上海:上海科学技术出版社,2021.
    [2] 林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.

    LING Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
    [3] 朱进权,葛琼璇,张波,等. 考虑悬浮系统影响的高速磁悬浮列车牵引控制策略[J]. 电工技术学报,2022,37(12): 3087-3096.

    ZHU Jinquan, GE Qiongxuan, ZHANG Bo, et al. Traction control strategy of high-speed maglev considering the influence of suspension system[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3087-3096.
    [4] 康劲松,丁浩,倪菲,等. 计及悬浮系统影响的高速磁浮直线同步电机建模方法[J]. 西南交通大学学报,2024,59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431

    KANG Jinsong, DING Hao, NI Fei, et al. Modeling of high-speed maglev linear synchronous motors considering influence of suspension system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
    [5] ZHU J Q, GE Q X, SUN P K. Extended state observer-based sensorless control for high-speed maglev application in single-feeding mode and double-feeding mode[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1350-1361. doi: 10.1109/TTE.2021.3093342
    [6] WANG G L, VALLA M, SOLSONA J. Position sensorless permanent magnet synchronous machine drives—a review[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5830-5842. doi: 10.1109/TIE.2019.2955409
    [7] KIM H, JUNG H S, SUL S K. Stator winding temperature and magnet temperature estimation of IPMSM based on high-frequency voltage signal injection[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2296-2306. doi: 10.1109/TIE.2022.3174285
    [8] ORTOMBINA L, BERTO M, ALBERTI L. Sensorless drive for salient synchronous motors based on direct fitting of elliptical-shape high-frequency currents[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3394-3403. doi: 10.1109/TIE.2022.3177753
    [9] 吴婷. 永磁同步电机全速范围无位置传感器控制策略研究[D]. 长沙:湖南大学,2022.
    [10] 王涛,黄景春,杨天昊. 基于改进的Super-Twisting滑模观测器的永磁同步电机无传感器控制[J]. 西南交通大学学报,2025,60(3):445-453.

    WANG Tao, HUANG Jinchun, YANG Tianhao. Sensorless control of permanent magnet synchronous motor based on improved super-twisting sliding mode observer[J]. Journal of Southwest Jiaotong University, 2025, 60(3):445-453.
    [11] 沈泽微,蒋栋,陈嘉楠. 一种通用的PWM变流器开关脉冲延时补偿策略[J]. 中国电机工程学报,2021,41(9): 2990-2998.

    SHEN Zewei, JIANG Dong, CHEN Jianan. A general switch pulse delay compensation strategy for PWM converter[J]. Proceedings of the CSEE, 2021, 41(9): 2990-2998.
    [12] 鄢永,黄文新. 基于闭环电流预测的永磁同步电机电流环延时补偿策略研究[J]. 中国电机工程学报,2022,42(10): 3786-3795.

    YAN Yong, HUANG Wenxin. Research on delay compensation strategy of permanent magnet synchronous motor based on closed-loop current prediction[J]. Proceedings of the CSEE, 2022, 42(10): 3786-3795.
    [13] 王志强,郭伟鹏,桑孜良,等. 高速磁浮列车导向系统优化控制方法研究[J]. 西南交通大学学报,2025,60(4):833-841,864.

    WANG Zhiqiang, GUO Weipeng, SANG Ziliang, et al. Optimization control for the guidance system of high-speed maglev train [J]. Journal of Southwest Jiaotong University, 2025, 60(4):833-841,864.
    [14] WANG Y R, XU Y X, ZOU J B. Sliding-mode sensorless control of PMSM with inverter nonlinearity compensation[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10206-10220. doi: 10.1109/TPEL.2018.2890564
    [15] WU X, LI C, ZHANG Y Y, et al. Sensorless control of IPMSM equipped with LC sinusoidal filter based on full-order sliding mode observer and feedforward QPLL[J]. IEEE Transactions on Power Electronics, 2024, 39(7): 8072-8085. doi: 10.1109/TPEL.2024.3390050
    [16] LIU Z H, NIE J, WEI H L, et al. A newly designed VSC-based current regulator for sensorless control of PMSM considering VSI nonlinearity[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4420-4431. doi: 10.1109/JESTPE.2020.3033037
    [17] WU S H, HU C X, ZHAO Z Y, et al. High-accuracy sensorless control of permanent magnet linear synchronous motors for variable speed trajectories[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 4396-4406. doi: 10.1109/TIE.2023.3288145
    [18] ZHANG H, LIANG W R, GAO L Y, et al. Switching angle fitting-based delay compensation with IPLL for IPMSM sensorless drives under SHEPWM[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 660-669. doi: 10.1109/TTE.2023.3276878
    [19] CAO X Q, GE Q X, ZHU J Q, et al. Periodic traction force fluctuations suppression strategy of maglev train based on flux linkage observation and harmonic current injection[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 3434-3451. doi: 10.1109/TTE.2022.3221193
    [20] ZHANG H, LIU W G, CHEN Z, et al. An overall system delay compensation method for IPMSM sensorless drives in rail transit applications[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1316-1329. doi: 10.1109/TPEL.2020.3015742
    [21] KANG J S, DING H, ZOU P R, et al. Model predictive thrust force control for 3L-NPC fed linear synchronous motor of maglev train[J]. IEEE Transactions on Transportation Electrification, 2024, 1: 3368071.1-3368071.9.
    [22] KANG J S, MU S Y, NI F. Improved EL model of long stator linear synchronous motor via analytical magnetic coenergy reconstruction method[J]. IEEE Transactions on Magnetics, 2020, 56(8): 3002964.1-3002964.13.
    [23] 张昕,翟凌露,王舰深,等. 基于加权融合的常导高速磁浮列车UKF定位算法[J]. 西南交通大学学报,2024,59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501

    ZHANG Xin, ZHAI Linglu, WANG Jianshen, et al. Weighted fusion-based unscented Kalman filter positioning algorithm for normal-conducting high-speed maglev trains[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
    [24] WU T, LUO D R, WU X, et al. Square-wave voltage injection based PMSM sensorless control considering time delay at low switching frequency[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5525-5535. doi: 10.1109/TIE.2021.3094444
  • 期刊类型引用(16)

    1. 胡朋,陈婉婷,韩艳,陈飞,丁少凌. 基于大涡模拟的山区桥址风场及其对桥梁抖振响应的影响. 湖南大学学报(自然科学版). 2025(01): 160-175 . 百度学术
    2. 朱佩章,胡博,刘智. Y型沟谷桥址区风特性的数值模拟研究. 公路交通科技. 2024(04): 65-72 . 百度学术
    3. 张明金,颜庭辕,胡博,陈红宇,李永乐. 复杂山区桥址区地形模型的边界过渡段线型. 西南交通大学学报. 2024(06): 1423-1430 . 本站查看
    4. 严磊,李妍,何旭辉,邹云峰. 高山峡谷桥址处风场特性的大涡模拟研究. 中南大学学报(自然科学版). 2023(01): 137-145 . 百度学术
    5. 张明金,邢龙飞,蒋帆影,张金翔,李永乐. 漏斗型峡谷桥址区平均风特性的数值模拟. 西南交通大学学报. 2023(02): 381-387 . 本站查看
    6. 贺佳伟,赵亚哥白,张洪福,辛大波. 复杂山区地形滑雪场区域风环境数值模拟. 自然灾害学报. 2023(02): 51-60 . 百度学术
    7. 周莉,唐志. 山区大跨径悬索桥风场特性CFD数值模拟研究. 交通科技. 2023(03): 39-42+49 . 百度学术
    8. 陈应高,康佳,唐浩俊,郑凯锋,李永乐. 高陡山区大跨度钢箱梁悬索桥风致振动试验和气动外形优化. 振动与冲击. 2023(18): 241-249 . 百度学术
    9. 陈科技,卞荣,潘晨,徐海巍,鲍旭明,张琳琳,楼文娟. 交叉山脉地形下的山谷平均风速特性研究. 电工技术. 2022(05): 123-127+131 . 百度学术
    10. 张会阳,江鹏,钱权,邓雨,何伊妮. 基于RANS的三维山地风场数值模拟研究. 建筑结构. 2022(S2): 2014-2020 . 百度学术
    11. 戴显荣,叶雨清. 温州洪溪特大桥总体设计. 桥梁建设. 2021(02): 99-104 . 百度学术
    12. 李永乐,喻济昇,张明金,唐浩俊. 山区桥梁桥址区风特性及抗风关键技术. 中国科学:技术科学. 2021(05): 530-542 . 百度学术
    13. 牛亚路,李岩,王印. 上风向山头对风电机组的安全性影响研究. 南方能源建设. 2021(04): 43-49 . 百度学术
    14. 葛文澎,吴迪,苗得胜,刘怀西,李岩. 基于CFD的复杂地形风电机组机位微地形风资源数值模拟研究. 南方能源建设. 2020(01): 59-64 . 百度学术
    15. 李加武,徐润泽,党嘉敏,朱长宇,王子建. 喇叭口河谷地形基本风特性实测. 长安大学学报(自然科学版). 2020(06): 47-56 . 百度学术
    16. 郭利豪,李国栋,李莹慧. 局部防风措施对大坝施工的防护作用数值模拟研究. 水资源与水工程学报. 2020(06): 155-162 . 百度学术

    其他类型引用(35)

  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 51
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-10-29
  • 网络出版日期:  2025-03-08
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回