• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于数字孪生模型的磁浮平面电机剩磁补偿

徐逢秋 邱熠 何加文 许贤泽

徐逢秋, 邱熠, 何加文, 许贤泽. 基于数字孪生模型的磁浮平面电机剩磁补偿[J]. 西南交通大学学报, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
引用本文: 徐逢秋, 邱熠, 何加文, 许贤泽. 基于数字孪生模型的磁浮平面电机剩磁补偿[J]. 西南交通大学学报, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
Citation: XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556

基于数字孪生模型的磁浮平面电机剩磁补偿

doi: 10.3969/j.issn.0258-2724.20240556
基金项目: 国家重点研发计划(2022YFF0605400);湖北省科技创新人才计划项目(2024DJC046)
详细信息
    作者简介:

    徐逢秋(1990—),男,副教授,博士,研究方向为磁悬浮系统设计和磁悬浮平面电机运动控制,E-mail:hncxu@whu.edu.cn

    通讯作者:

    许贤泽(1967—),男,教授,博士,研究方向为精密测量与控制和磁悬浮控制技术,E-mail:xuxianze@whu.edu.cn

  • 中图分类号: TM351

Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model

  • 摘要:

    为提升磁浮平面电机发生退磁故障后的控制性能,提出一种针对永磁体阵列的剩磁补偿方法,并通过数字孪生模型对所提方法进行有效性验证. 首先,构建基于数字孪生五维模型的磁浮平面电机数字孪生框架,明确5层架构的组成部分;其次,利用磁荷节点模型探讨动子周围磁场与剩余磁化强度的关系,获得剩磁反演表达式,并在运动解耦过程中引入反演获得的剩磁数据,得出剩磁补偿后的控制电流;最后,利用不同退磁分布的磁浮平面电机孪生体数据,反演得到剩磁数值,通过多组轨迹跟踪仿真实验,对比无退磁、忽视退磁影响、剩磁反演补偿3种情况下的运动模拟. 研究结果表明:与忽视退磁影响相比,采用剩磁反演补偿方法,水平方向上进行斜坡轨迹跟踪的均方根误差减小56.5%,最大误差减小40.9%;平面运动阶跃响应稳定时间减少41.3%,超调量减少15.7%;圆轮廓跟踪时,轮廓误差的均方根减小85.0%,最大误差减小38.9%.

     

  • 图 1  磁浮平面电机的数字孪生系统框架

    Figure 1.  Digital twin system framework for maglev planar motor

    图 2  磁浮平面电机数字孪生体

    Figure 2.  Digital twin of maglev planar motor

    图 3  磁浮平面电机结构及磁荷节点分布

    Figure 3.  Structure of maglev planar motor and distribution of magnetic charge nodes

    图 4  剩磁补偿控制流程

    Figure 4.  Remanence compensation control process

    图 5  磁场测量传感系统

    Figure 5.  Magnetic field measurement sensor system

    图 6  磁浮平面电机退磁率分布

    Figure 6.  Demagnetization rate distribution of maglev planar motor

    图 7  剩磁反演结果

    Figure 7.  Results of remanence inversion

    图 8  气隙磁场对比

    Figure 8.  Air gap magnetic field comparison

    图 9  斜坡轨迹跟踪实验结果

    Figure 9.  Experimental results for ramp trajectory tracking

    图 10  阶跃响应实验结果

    Figure 10.  Experimental results for step response

    图 11  圆轮廓的跟踪误差

    Figure 11.  Tracking errors of circular contour

    图 12  圆轮廓跟踪

    Figure 12.  Circular contour tracking

    表  1  磁浮平面电机结构参数

    Table  1.   Structural parameters of maglev planar motor

    参数 数值
    Lm/mm
    Wm/mm
    Hm/mm
    40
    10
    10
    动子质量/kg 2.37
    Lc/mm
    Wc/mm
    Hc/mm
    Rc/mm
    60
    10
    10
    10
    线圈匝数/匝 300
    Ix/(×10−3 kg•m2
    Iy/(×10−3 kg•m2
    Iz/(×10−3 kg•m2
    9.38
    9.38
    18.70
    下载: 导出CSV

    表  2  永磁体退磁率分布

    Table  2.   Demagnetization rate distribution of permanent magnets

    阵列 基本无退磁 轻度退磁 重度退磁
    阵列 1 2,3,4,5,7,8,9,10,11,12 1 6
    阵列 2 1,2,4,5,6,7,10,11,12 3,8,9
    阵列 3 1,2,3,5,6,7,8,10,11,12 9 4
    阵列 4 1,2,3,4,5,7,9,10,12 6,8,11
    下载: 导出CSV

    表  3  剩磁反演误差分析

    Table  3.   Error analysis of remanence inversion

    参数 erms,B/T emap/% R2
    取值 0.011 0.67738 0.99549
    下载: 导出CSV

    表  4  气隙磁感应强度误差分析

    Table  4.   Error analysis of air gap magnetic flux density

    阵列位置 条件 erms,B/T emap/%
    阵列 1 条件 1 0.016939 45.1079
    条件 2 0.001293 3.6183
    阵列 3 条件 1 0.015386 28.4291
    条件 2 0.001790 3.9413
    下载: 导出CSV

    表  5  斜坡轨迹跟踪控制性能

    Table  5.   Control performance for ramp trajectory tracking mm

    速度/(mm·s−1情况x 方向y 方向
    ermsemaxermsemax
    40Cideal0.000990.005270.000740.00224
    C10.005860.022660.001710.00699
    C20.002650.013440.000790.00236
    10Cideal0.000890.005510.000700.00221
    C10.006160.024360.001600.00702
    C20.002680.014400.000910.00223
    下载: 导出CSV

    表  6  阶跃响应性能指标

    Table  6.   Performance metrics for step response

    情况 方向 响应时间/ms 超调量/mm
    Cideal x 24 0.7327
    y 27 0.7077
    C1 x 63 0.9007
    y 63 0.9034
    C2 x 37 0.7758
    y 39 0.7616
    下载: 导出CSV

    表  7  圆轮廓跟踪性能

    Table  7.   Performance of circular contour tracking

    性能指标 εrms/mm εmax/mm
    Cideal 0.0015 0.0156
    C1 0.0113 0.0275
    C2 0.0017 0.0168
    下载: 导出CSV
  • [1] 郭东明. 高性能制造[J]. 机械工程学报,2022,58(21): 225-242. doi: 10.3901/JME.2022.21.225

    GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21): 225-242. doi: 10.3901/JME.2022.21.225
    [2] ZHOU L, WU J J. Magnetic levitation technology for precision motion systems: a review and future perspectives[J]. International Journal of Automation Technology, 2022, 16(4): 386-402. doi: 10.20965/ijat.2022.p0386
    [3] FU H, HU C X, YU D D, et al. Cascaded iterative learning motion control of precision maglev planar motor with experimental investigation[J]. ISA Transactions, 2023, 139: 463-474. doi: 10.1016/j.isatra.2023.03.031
    [4] FAIZ J, NEJADI-KOTI H. Demagnetization fault indexes in permanent magnet synchronous motors: an overview[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-11.
    [5] NAIR S S, PATEL V I, WANG J B. Post-demagnetization performance assessment for interior permanent magnet AC machines[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-10.
    [6] WOO D K, JEONG B H. Irreversible demagnetization of permanent magnet in a surface-mounted permanent magnet motor with overhang structure[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-6.
    [7] JANSEN J W, VAN LIEROP C M M, LOMONOVA E A, et al. Modeling of magnetically levitated planar actuators with moving magnets[J]. IEEE Transactions on Magnetics, 2007, 43(1): 15-25.
    [8] HUANG S D, LIN Z X, CAO G Z, et al. Nonlinear dynamic model-based position control parameter optimization method of planar switched reluctance motors[J]. Mathematics, 2023, 11(19): 4067.1-4067.19.
    [9] 周扬,周瑾,王艺宇,等. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报,2024,59(4): 755-765.

    ZHOU Yang, ZHOU Jin, WANG Yiyu, et al. Modeling and robust control of magnetic bearing-rotor system considering interface contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765.
    [10] HUANG S D, XU Z H, CAO G Z, et al. Nonlinear-disturbance-observer-based predictive control for trajectory tracking of planar motors[J]. IET Electric Power Applications, 2024, 18(4): 389-399. doi: 10.1049/elp2.12398
    [11] PARK Y, FERNANDEZ D, LEE S B, et al. Online detection of rotor eccentricity and demagnetization faults in PMSMs based on Hall-effect field sensor measurements[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2499-2509.
    [12] BRAUN J, DOPPELBAUER M, BRAUN J, et al. Calculation of the demagnetization for permanent magnet synchronous machines[C]//2016 XXII International Conference on Electrical Machines (ICEM). Lausanne: ACM, 2016: 173-179.
    [13] HUANG L, ZHOU F L, WANG W, et al. Digital twin method and application practice of spacecraft system driven by mechanism data[J]. Digital Twin, 2024, 4: 1-16. doi: 10.12688/digitaltwin.17918.1
    [14] 丁国富,何旭,张海柱,等. 数字孪生在高速列车生命周期中的应用与挑战[J]. 西南交通大学学报,2023,58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573

    DING Guofu, HE Xu, ZHANG Haizhu, et al. Application and challenges of digital twin in life cycle of high-speed trains[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573
    [15] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.1-154798.14.
    [16] 陶飞,程颖,程江峰,等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统,2017,23(8): 1603-1611.

    TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611.
    [17] KOHTZ S, ZHAO J H, RENTERIA A, et al. Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach[J]. Reliability Engineering & System Safety, 2024, 242: 109714.1-109714.12.
    [18] 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1): 1-18.

    TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.
    [19] BANCEL F. Magnetic nodes[J]. Journal of Physics D: Applied Physics, 1999, 32(17): 2155-2161. doi: 10.1088/0022-3727/32/17/304
    [20] MAHMOUDITABAR F, VAHEDI A, MARIGNETTI F. The demagnetization phenomenon in PM machines: principles, modeling, and design considerations[J]. IEEE Access, 2023, 11: 47750-47773. doi: 10.1109/ACCESS.2023.3274701
    [21] LI W L, ZHANG M W, ZHAO X, et al. Effect of demagnetization fault on electromagnetic field and related parameters in permanent magnet wind generator[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS). Harbin: ACM, 2019: 1-7.
    [22] CHOI G, JAHNS T M. Investigation of key factors influencing the response of permanent magnet synchronous machines to three-phase symmetrical short-circuit faults[J]. IEEE Transactions on Energy Conversion, 2019, 31(4): 1488-1497.
    [23] ZHAN H L, WU L J, LYU Z K, et al. Uneven demagnetization fault diagnosis in dual three-phase permanent magnet machines based on electrical signal difference[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 3026-3039.
    [24] XU F Q, PENG R T, ZHENG T, et al. Development and validation of numerical magnetic force and torque model for magnetically levitated actuator[J]. IEEE Transactions on Magnetics, 2022, 55(1): 1-9.
    [25] XU F Q, SHI Y, ZHANG K Y, et al. Real-time application of robust offset-free MPC in maglev planar machine[J]. IEEE Transactions on Industrial Electronics, 2023, 70(6): 6121-6130.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  84
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2025-02-28
  • 网络出版日期:  2025-05-20
  • 刊出日期:  2025-04-03

目录

    /

    返回文章
    返回