• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

压力条件下超高比能锂金属电池特性分析

时玮 柴进 夏明远

时玮, 柴进, 夏明远. 压力条件下超高比能锂金属电池特性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240033
引用本文: 时玮, 柴进, 夏明远. 压力条件下超高比能锂金属电池特性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240033
SHI Wei, CHAI Jin, XIA Mingyuan. Characteristics Analysis of Lithium Metal Batteries with Ultra-High Energy Density under Pressure Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240033
Citation: SHI Wei, CHAI Jin, XIA Mingyuan. Characteristics Analysis of Lithium Metal Batteries with Ultra-High Energy Density under Pressure Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240033

压力条件下超高比能锂金属电池特性分析

doi: 10.3969/j.issn.0258-2724.20240033
基金项目: 国家自然科学基金项目(52177206)
详细信息
    作者简介:

    时玮(1984—),男,博士,副教授,研究方向为动力电池安全评估与电池BMS管理,E-mail:weishi@bjtu.edu.cn

  • 中图分类号: TM912

Characteristics Analysis of Lithium Metal Batteries with Ultra-High Energy Density under Pressure Conditions

  • 摘要:

    外部压力对锂金属电池的性能起着至关重要的作用. 为研究锂金属电池在不同压力条件下宏观电池性能表现和微观锂沉积特性,首先通过加压试验及电子显微镜扫描验证施加外部压力有助于改善锂金属负极表面形貌,为揭示其作用机理,并将非线性相场模型与力模型耦合,分析微观不用压力条件对锂的沉积形貌及内部应力分布的影响. 研究结果表明:在没有外部压力作用时,锂金属电池对外膨胀加速了锂枝晶的持续生长,导致容量快速衰退;模拟数据显示,随着外部压力的逐渐增大,锂枝晶的主轴长度由2.04 μm降低到1.1 μm,宽高比由0.32提升至0.79,这种光滑粗壮的形貌演变显著降低锂枝晶的比表面积,但同时也增加了力学不稳定性. 本文所提供的在不同外部压力下锂枝晶的相图,为锂金属电池压力管理设计提供理论支持.

     

  • 图 1  压力条件下锂金属电池性能测试流程

    Figure 1.  Performance test procedure for lithium metal batteries under pressure

    图 2  锂金属电池膨胀特性

    Figure 2.  Expansion characteristics of lithium metal batteries

    图 3  自研恒压力测试装置

    Figure 3.  Self-developed constant pressure testing device

    图 4  不同外部压强下电池膨胀量

    Figure 4.  Battery expansion under different external pressures

    图 5  锂金属电池不同压力下电化学特性

    Figure 5.  Electrochemical properties of lithium metal batteries under different pressures

    图 6  压力测试装置

    Figure 6.  Pressure test device

    图 7  电池充放电过程中表面压力变化

    Figure 7.  Surface pressure changes during battery charging and discharging

    图 8  锂金属电池表面压强随循环寿命的变化

    Figure 8.  Variation of surface pressure of lithium metal batteries with cycle life

    图 9  不同压力下电池表面压强增量

    Figure 9.  Pressure increment on battery surface under different pressures

    图 10  不同压力下电池循环寿命

    Figure 10.  Battery cycle life under different pressures

    图 11  不同初始压力下锂金属电池负极界面形貌对比

    Figure 11.  Comparison of negative electrode surface morphology of lithium metal batteries under different initial pressures

    图 12  不同初始压力下锂负极沉积形貌对比

    Figure 12.  Comparison of negative electrode deposition morphology of lithium metal batteries under different initial pressures

    图 13  不同压力下枝晶生长形貌

    Figure 13.  Dendrite growth morphology under different pressures

    图 14  不同时刻相场模拟结果

    Figure 14.  Phase field simulation results at different time

    图 15  无外压力下锂沉积相场模拟结果

    Figure 15.  Simulation results of lithium deposition phase field without external pressure

    图 16  外压力对锂沉积形貌影响示意

    Figure 16.  Influence of external pressure on lithium deposition morphology

    图 17  不同外部压力条件下锂枝晶形貌演变结果

    Figure 17.  Evolution results of lithium dendrite morphology under different external pressures

    图 18  锂离子沉积量的归一化值及枝晶长度数值

    Figure 18.  Normalized amount and dendrite length of lithium-ion deposition

    图 19  枝晶形貌宽高比

    Figure 19.  Aspect ratio of dendrite morphology

    图 20  不同外部压力作用下最大Von Mises应力变化

    Figure 20.  Variation of maximum Von Mises stress with external pressure

    表  1  耦合模型参数值

    Table  1.   Coupling model parameter values

    参数 符号 数值 参考文献
    界面迁移速率/(m3•(J•s)−1) $ {L_\sigma } $ 10−6 [17-18]
    反应速率常数/s−1 $ {L_\eta } $ 0.5 [17-18]
    能量梯度系数/(J•m−1) $ {k_0} $ 1.5 × 10−6 [17-18]
    势垒高度/(J•m−3) $ w $ 3.5 × 105 [17-18]
    各向异性强度 $ \delta $ 0.03 [17-18]
    各向异性模数 $ \omega $ 4 [17-18]
    对称因子 $ \alpha $ 0.5 [17-18]
    初始电解质浓度/(mol•m3) $ {c_0} $ 1.00 × 103 [17-18]
    金属锂中初始锂原
    子浓度/(mol•m3)
    $ {c_{\mathrm{s}}} $ 7.69 × 104 [17-18]
    电极扩散系数/(m2•s−1) $ {D_{\mathrm{e}}} $ 2 × 10−15 [24]
    电解质扩散系数/(m2•s−1) $ {D_{\mathrm{s}}} $ 2 × 10−15 [24]
    电极电导率/(S•m−1) $ {\sigma _{\mathrm{e}}} $ 107 [24]
    电解质电导率/(S•m−1) $ {\sigma _{\mathrm{s}}} $ 0.1 [24]
    电极杨氏模量/GPa $ {E_{\mathrm{e}}} $ 7.8 [24-25]
    电解质杨氏模量/GPa $ {E_{\mathrm{s}}} $ 1.0 [24-25]
    电极泊松比 $ {v_{\mathrm{e}}} $ 0.42 [24-25]
    电解质泊松比 $ {v_{\mathrm{s}}} $ 0.30 [24-25]
    Vegard 应变系数 $ {\lambda _{\mathrm{i}}} $ −8.66 × 10−4,
    −7.73 × 10−4,
    −5.29 × 10−4
    [24-25]
    下载: 导出CSV
  • [1] 秦潜聪,吴冠霖,高原,等. 面向战场条件的无人机集群分布式存储方法[J]. 西南交通大学学报,2024,59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521

    QIN Qiancong, WU Guanlin, GAO Yuan, et al. Distributed storage methods for unmanned aerial vehicle clusters in battlefield[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521
    [2] 郭林,刘飞,李佳钰,等. 基于能量管理策略的太阳能无人机航迹跟踪控制[J]. 西北工业大学学报,2023,41(2): 409-418. doi: 10.3969/j.issn.1000-2758.2023.02.019

    GUO Lin, LIU Fei, LI Jiayu, et al. Path tracking control of solar-powered UAV based on energy management strategy[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 409-418. doi: 10.3969/j.issn.1000-2758.2023.02.019
    [3] KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794. doi: 10.1021/acs.chemrev.0c00431
    [4] 金礼芬,蒲建,杨文斌,等. 太阳能无人机的能源系统技术与发展趋势[J]. 信息记录材料,2022,23(6): 13-16. doi: 10.3969/j.issn.1009-5624.2022.6.xxjlcl202206003

    JIN Lifen, PU Jian, YANG Wenbin, et al. Overview of solar powered UAV development[J]. Information Recording Materials, 2022, 23(6): 13-16. doi: 10.3969/j.issn.1009-5624.2022.6.xxjlcl202206003
    [5] ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: a phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35. doi: 10.1016/j.jechem.2021.12.020
    [6] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [7] ARGUELLO M E, LABANDA N A, CALO V M, et al. Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library[J]. Journal of Energy Storage, 2022, 53: 104892.1-104892.21.
    [8] 李志强,刘媛,李彬,等. 一种面向浮充工况的锂离子电池组早期内短路快速定量诊断方法[J/OL]. 西南交通大学学报,1-8[2025-02-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240614.1318.006.html.

    LI Zhiqiang, LIU Yuan, LI Bin, et al. A rapid quantitative diagnosis method for early internal short circuit of lithium-ion battery packs under float charging conditions [J/OL]. Journal of Southwest Jiaotong University, 1-8 [2025-02-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240614.1318.006.html.
    [9] RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. doi: 10.1021/acs.jpcc.9b00436
    [10] MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921.1-100921.10.
    [11] VERMA P, PURAVANKARA S, NANDANWAR M N, et al. Insights into the morphological evolution of mossy dendrites in lithium metal symmetric and full cell: a modelling study[J]. Journal of the Electrochemical Society, 2023, 170(3): 030529.1-030529.11.
    [12] CHENG F, HU Y, ZHAO L X. Analysis of weak solutions for the phase-field model for lithium-ion batteries[J]. Applied Mathematical Modelling, 2020, 78: 185-199. doi: 10.1016/j.apm.2019.09.048
    [13] REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204. doi: 10.1021/acs.jpcc.0c01116
    [14] ARGUELLO M E, GUMULYA M, DERKSEN J, et al. Phase-field modeling of planar interface electrodeposition in lithium-metal batteries[J]. Journal of Energy Storage, 2022, 50: 104627.1-104627.13.
    [15] JING H X, XING H, DONG X L, et al. Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition[J]. Journal of the Electrochemical Society, 2022, 169(3): 032511.1-032511.6.
    [16] MONROE C, NEWMAN J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377.1-A1377.8.
    [17] GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry Ⅰ: equilibrium[J]. Physical Review E, 2004, 69(2): 021603.1-021603.13.
    [18] CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. doi: 10.1016/j.jpowsour.2015.09.055
    [19] ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565. doi: 10.1016/j.ensm.2019.03.029
    [20] MCDOWELL M T, CORTES F J Q, THENUWARA A C, et al. Toward high-capacity battery anode materials: chemistry and mechanics intertwined[J]. Chemistry of Materials, 2020, 32(20): 8755-8771. doi: 10.1021/acs.chemmater.0c02981
    [21] TANG Y F, ZHANG L Q, CHEN J Z, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy & Environmental Science, 2021, 14(2): 602-642.
    [22] WANG M J, KAZYAK E, DASGUPTA N P, et al. Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations[J]. Joule, 2021, 5(6): 1371-1390. doi: 10.1016/j.joule.2021.04.001
    [23] 朱迎迎,王勇,徐淼,等. 追踪锂金属负极的压力与形貌变化[J]. 物理化学学报,2023,39(1): 77-84.

    ZHU Yingying, WANG Yong, XU Miao, et al. Tracking pressure changes and morphology evolution of lithium metal anodes[J]. Acta Physico-Chimica Sinica, 2023, 39(1): 77-84.
    [24] SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416.1-2003416.9.
    [25] ZHANG X, WANG Q J, HARRISON K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012.1-100012.19.
    [26] 罗崇亮,余云燕,张璟,等. 硫酸盐渍土热-质迁移试验与耦合模型[J]. 西南交通大学学报,2023,58(2): 470-478.

    LUO Chongliang, YU Yunyan, ZHANG Jing, et al. Heat-mass transfer test and coupling model of sulfate saline soil[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 470-478.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  17
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-04-07
  • 网络出版日期:  2025-03-11

目录

    /

    返回文章
    返回