• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于改进NMPC的永磁电动悬浮汽车横向控制

毕经国 柯志昊 杨轶莹 李诤言 邓自刚

毕经国, 柯志昊, 杨轶莹, 李诤言, 邓自刚. 基于改进NMPC的永磁电动悬浮汽车横向控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240494
引用本文: 毕经国, 柯志昊, 杨轶莹, 李诤言, 邓自刚. 基于改进NMPC的永磁电动悬浮汽车横向控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240494
BI Jingguo, KE Zhihao, YANG Yiying, LI Zhengyan, DENG Zigang. Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240494
Citation: BI Jingguo, KE Zhihao, YANG Yiying, LI Zhengyan, DENG Zigang. Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240494

基于改进NMPC的永磁电动悬浮汽车横向控制

doi: 10.3969/j.issn.0258-2724.20240494
基金项目: 中央高校基本科研业务费专项资金(2682023CG010);江苏省交通运输厅科技项目
详细信息
    作者简介:

    毕经国(1999—),男,博士研究生,研究方向为磁悬浮汽车智能感知与控制,E-mail:935993966@qq.com

    通讯作者:

    邓自刚(1982—),男,研究员,博士,研究方向为磁浮交通技术及应用,E-mail:deng@swjtu.cn

  • 中图分类号: xxx

Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller

  • 摘要:

    针对横向力不足、模型不确定和时变扰动环境下永磁电动悬浮汽车横向运动控制问题,提出一种改进非线性模型预测横向跟踪控制方法(NMPC-ESO-EKF)以实现车辆横向精准控制. 首先,提出通过偏转磁轮来补偿系统横向力的横向运行模式,以此建立横向非线性动力学模型;然后,建立含有约束条件的非线性模型预测控制器(NMPC),并构造扩张状态观测器(ESO)来观测系统内外扰动以补偿控制输入,同时引入扩展卡尔曼滤波器(EKF)消除传感器测量噪声对ESO观扰的影响;最后,搭建联合仿真平台和实验平台进行仿真与实验验证. 研究结果表明:永磁电动悬浮汽车在横向运行模式下,能有效实现左右横移运动;相较于PID-EKF控制,在定常数参考信号下,NMPC-ESO-EKF超调量降低98.90%,系统调节时间缩短47.78%;在方波参考信号下,系统平均超调量和平均跟踪误差分别降低了93.77%和36.13%;施加扰动后,系统横向位移波动幅值减小34.51%,恢复时间缩短42.08%,横向控制精度与抗扰能力大幅提升,为永磁电动悬浮汽车横向控制研究提供一定参考.

     

  • 图 1  环形Halbach阵列永磁轮

    Figure 1.  Annular Halbach permanent magnet wheel

    图 2  常规永磁轮与偏转永磁轮示意

    Figure 2.  Conventional permanent magnet wheel and deflecting permanent magnet wheel

    图 3  永磁电动悬浮汽车原理样机结构示意

    Figure 3.  PMEDS vehicle prototype structure

    图 4  系统横向运行原理

    Figure 4.  Principle of lateral motion of system

    图 5  NMPC-ESO-EKF控制器结构

    Figure 5.  NMPC-ESO-EKF controller structure

    图 6  定常数轨迹跟踪控制系统响应

    Figure 6.  System response of constant trajectory tracking control

    图 7  外部扰动信号

    Figure 7.  External disturbance signal

    图 9  ESO扰动观测值

    Figure 9.  Disturbance observation value of ESO

    图 10  内外部扰动条件下系统响应

    Figure 10.  System response under internal and external disturbance

    图 8  外部扰动条件下的系统响应

    Figure 8.  System response under external disturbance

    图 11  EKF滤波估计仿真结果

    Figure 11.  Simulation results of EKF estimation

    图 12  实验平台结构

    Figure 12.  Experimental platform structure

    图 13  EKF滤波估计实验结果

    Figure 13.  Experimental results of EKF estimation

    图 14  小距离定常数轨迹跟踪控制系统响应

    Figure 14.  System response of short-distance constant trajectory tracking control

    图 15  方波信号轨迹跟踪控制系统响应

    Figure 15.  System response of square wave signal trajectory tracking control

    图 16  大距离定常数轨迹跟踪控制系统响应

    Figure 16.  System response of long-distance constant trajectory tracking control

    表  1  永磁电动悬浮汽车模型参数

    Table  1.   Model parameters of PMEDS vehicle

    编号 参数 数值
    整车
    参数
    整车质量m/kg
    悬浮间隙h/mm
    横向阻尼系数c/(N·s·m−1
    18.1
    10
    17.2
    磁轮
    参数
    极对数P
    外径Ro/mm
    内径Ri/mm
    宽度d/mm
    磁化角q
    磁轮转速n0/rpm
    磁轮磁阻力Fr0/N
    4
    50
    32.5
    35
    90
    2000
    17.33
    磁轮偏转角度范围α −20~20
    下载: 导出CSV

    表  2  系统响应结果对比

    Table  2.   Comparison of system response results

    控制器 0~12 s 12 s 后
    平均误差/mm 性能提升/% 平均误差/mm 性能提升/%
    NMPC 71.31 34.41
    NMPC-ESO 319.54 −348.10 183.07 −432.03
    NMPC-EKF 57.99 18.70 6.12 82.20
    NMPC-ESO-EKF 57.93 18.76 3.52 89.77
    下载: 导出CSV

    表  3  方波信号轨迹跟踪控制系统响应结果对比

    Table  3.   Comparison of system response results of square wave signal trajectory tracking control mm

    控制器 平均跟踪误差 平均超调量
    PID-EKF 57.60 164.96
    MPC-EKF 38.48 20.48
    NMPC-EKF 36.82 15.69
    NMPC-ESO-EKF 36.79 10.27
    下载: 导出CSV

    表  4  大距离定常数轨迹跟踪控制系统响应结果对比

    Table  4.   Comparison of system response results of long-distance constant trajectory tracking control

    控制器 位移波动幅值/mm 恢复时间/s
    PID-EKF 40.89 6.82
    MPC-EKF 45.39 10.46
    NMPC-EKF 35.73 6.80
    NMPC-ESO-EKF 26.78 3.95
    下载: 导出CSV
  • [1] LIU B, SUN C, WANG B, et al. Adaptive speed planning of connected and automated vehicles using multi-light trained deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3533-3546. doi: 10.1109/TVT.2021.3134372
    [2] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530.
    [3] 林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.

    LIN Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
    [4] 赵春发,刘浩东,冯洋,等. 五位姿参数下车载永磁体与永磁轨道之间的磁力特性研究[J]. 西南交通大学学报,2024,59(4): 804-811.

    ZHAO Chunfa, LIU Haodong, FENG Yang, et al. Magnetic force characteristics between on-board permanent magnet and permanent magnetic rail considering five pose parameters[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 804-811.
    [5] 胡永攀,曾杰伟,王志强,等. 超高速永磁电动悬浮系统性能优化[J]. 西南交通大学学报,2023,58(4): 773-782.

    HU Yongpan, ZENG Jiewei, WANG Zhiqiang, et al. Performance optimization of ultra-high speed permanent magnet electrodynamic suspension system[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782.
    [6] QIN W, BIRD J Z. Electrodynamic wheel magnetic rolling resistance[J]. IEEE Transactions on Magnetics, 2017, 53(8): 8107407.1-8107407.7.
    [7] SHI H F, KE Z H, ZHENG J, et al. An effective optimization method and implementation of permanent magnet electrodynamic wheel for maglev car[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8369-8381. doi: 10.1109/TVT.2023.3245620
    [8] WRIGHT J D. Modeling, analysis, and control of a radial electrodynamic wheel vehicle and analysis of an axial electrodynamic wheel[D]. Charlotte: The University of North Carolina at Charlotte, 2019.
    [9] FUJII N, NONAKA S, HAYASHI G. Design of magnet wheel integrated own drive[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4013-4015. doi: 10.1109/20.800739
    [10] FUJII N, HAYASHI G, SAKAMOTO Y. Characteristics of magnetic lift, propulsion and guidance by using magnet wheels with rotating permanent magnets[C]//Conference Record of the 2000 IEEE Industry Applications Conference. Rome: IEEE, 2002: 257-262.
    [11] JUNG K S. Parametric design of contact-free transportation system using the repulsive electrodynamic wheels[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2016, 17(3): 310-316. doi: 10.5762/KAIS.2016.17.3.310
    [12] JUNG K S. Transfer system using radial electrodynamic wheel over conductive track[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2017, 18(11): 794-801.
    [13] 刘新,邓自刚,梁乐,等. 基于斜置环形Halbach永磁轮的磁浮列车“悬浮-导向-推进” 一体化方案设计[J]. 机车电传动,2023(2): 90-96.

    LIU Xin, DENG Zigang, LIANG Le, et al. Levitation-guidance-propulsion integrated design for maglev trains based on oblique ring Halbach permanent magnet wheels[J]. Electric Drive for Locomotives, 2023(2): 90-96.
    [14] ZHANG Z, DENG Z G, ZHANG S, et al. Design and operating mode study of a new concept maglev car employing permanent magnet electrodynamic suspension technology[J]. Sustainability, 2021, 13(11): 5827.1-5827.20.
    [15] 徐俊起,林国斌,荣立军,等. 中低速磁浮列车悬浮控制技术成果及应用[J]. 铁道技术标准(中英文),2022(10): 34-39.

    XU Junqi, LIN Guobin, RONG Lijun, et al. Research achievements and application of levitation control technology for medium-low speed maglev train[J]. Railway Technical Standard (Chinese & English), 2022(10): 34-39.
    [16] DE BOEIJ J, STEINBUCH M, GUTIERREZ H. Real-time control of the 3-DOF sled dynamics of a null-flux maglev system with a passive sled[C]//IEEE Transactions on Magnetics. Montreal: IEEE, 2006: 1604-1610.
    [17] ZHANG B J, KE Z H, LI Z Y, et al. Yawing stability and manipulative approach design for maglev car based on active disturbance rejection control[J]. Asian Journal of Control, 2024, 26(2): 1003-1016. doi: 10.1002/asjc.3246
    [18] LI Z Y, KE Z H, SHI J H, et al. Investigation of RBF-SMC control strategy for vertical dynamics of maglev car considering temperature rise effects[J]. IEEE Transactions on Intelligent Vehicles, 2024, 99:1-14.
    [19] BIRD J, LIPO T A. Characteristics of an electrodynamic wheel using a 2-D steady-state model[J]. IEEE Transactions on Magnetics, 2007, 43(8): 3395-3405. doi: 10.1109/TMAG.2007.900572
    [20] BIRD J, LIPO T A. Calculating the forces created by an electrodynamic wheel using a 2-D steady-state finite-element method[J]. IEEE Transactions on Magnetics, 2008, 44(3): 365-372. doi: 10.1109/TMAG.2007.913038
    [21] PAUL S, BIRD J Z. A 3-D analytic eddy current model for a finite width conductive plate[J]. COMPEL: the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 33(1/2): 688-706. doi: 10.1108/COMPEL-03-2013-0083
    [22] 闫玉盼,饶兵,刘砚菊,等. 基于非线性模型预测的四旋翼无人机轨迹跟踪控制[J]. 沈阳理工大学学报,2024,43(1): 36-43,49.

    YAN Yupan, RAO Bing, LIU Yanju, et al. Trajectory tracking control of quadrotor based on nonlinear model predictive control[J]. Journal of Shenyang Ligong University, 2024, 43(1): 36-43,49.
    [23] KAMEL M, ALEXIS K, ACHTELIK M, et al. Fast nonlinear model predictive control for multicopter attitude tracking on SO(3)[C]//2015 IEEE Conference on Control Applications (CCA). Sydney: IEEE, 2015: 1160-1166.
    [24] 许鹏,邢伯阳,刘宇飞,等. 基于扩张状态观测器和模型预测方法的四足机器人抗干扰复合控制[J]. 兵工学报,2023,44(增2): 12-21.

    XU Peng, XING Boyang, LIU Yufei, et al. Anti-disturbance composite controller design of quadruped robot based on extended state observer and model predictive control technique[J]. Acta Armamentarii, 2023, 44(S2): 12-21.
    [25] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. doi: 10.1109/TIE.2008.2011621
    [26] 王天威,黄军魁. 控制之美(卷2): 最优化控制MPC与卡尔曼滤波器[M]. 北京:清华大学出版社,2023.
    [27] REIF K, UNBEHAUEN R. The extended Kalman filter as an exponential observer for nonlinear systems[J]. IEEE Transactions on Signal Processing, 1999, 47(8): 2324-2328. doi: 10.1109/78.774779
    [28] LI J, XIA Y Q, QI X H, et al. On convergence of the discrete-time nonlinear extended state observer[J]. Journal of the Franklin Institute, 2018, 355(1): 501-519. doi: 10.1016/j.jfranklin.2017.11.019
    [29] 陈松林,王鑫,何宗儒. 一种兼顾带宽拓展和噪声抑制的ESO参数整定方法[J]. 控制与决策,2018,33(10): 1908-1914.

    CHEN Songlin, WANG Xin, HE Zongru. A parameter tuning method for extended state observer with balance of bandwidth expansion and noise suppression[J]. Control and Decision, 2018, 33(10): 1908-1914.
    [30] 郭永飞,张荣彬,姚植元,等. 基于ESO-MPC的核电厂协调系统优化控制研究[J]. 核动力工程,2024,45(6): 178-184.

    GUO Yongfei, ZHANG Rongbin, YAO Zhiyuan, et al. Research on optimization control of nuclear power plant coordination system based on ESO-MPC[J]. Nuclear Power Engineering, 2024, 45(6): 178-184.
    [31] HUANG R, PATWARDHAN S C, BIEGLER L T. Robust stability of nonlinear model predictive control based on extended Kalman filter[J]. Journal of Process Control, 2012, 22(1): 82-89. doi: 10.1016/j.jprocont.2011.10.006
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  43
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-28
  • 修回日期:  2025-01-05
  • 网络出版日期:  2025-03-15

目录

    /

    返回文章
    返回