• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

应力-剪胀关系比较与岩石应力-剪胀关系研究

梁基冠 黄林冲 马建军 陈万祥

梁基冠, 黄林冲, 马建军, 陈万祥. 应力-剪胀关系比较与岩石应力-剪胀关系研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230231
引用本文: 梁基冠, 黄林冲, 马建军, 陈万祥. 应力-剪胀关系比较与岩石应力-剪胀关系研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230231
LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231
Citation: LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231

应力-剪胀关系比较与岩石应力-剪胀关系研究

doi: 10.3969/j.issn.0258-2724.20230231
基金项目: 国家自然科学基金(No. 51978677, 52278422),基础科研项目(No. JCKY2020110C096)
详细信息
    作者简介:

    梁基冠(1993—),男,博士研究生,研究方向为岩土力学,E-mail:liangjg5@mail2.sysu.edu.cn,ORCID:0000-0002-3217-4991

    通讯作者:

    马建军(1983—),男,副教授,研究方向为岩土与地下工程, E-mail:majianjun@mail.ssysu.edu.cn

  • 中图分类号: P642.3

Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks

  • 摘要:

    为研究典型应力-剪胀关系对常见岩土材料力学响应的预测效果,构建适合岩石材料的应力-剪胀关系,提升本构模型的准确性,本文结合试验数据对典型应力-剪胀关系展开对比分析,并构建适用于岩石的应力剪胀关系模型. 首先,基于热动力学框架和能量守恒方程,梳理出3种典型的应力-剪胀关系模型,并将多种岩土材料的应力-剪胀数据与典型应力-剪胀关系进行对比;随后,以Rowe剪胀关系模型为基本框架,考虑多种因素影响,提出适用于岩石的改进Rowe应力-剪胀关系模型,分析了其对试验数据的拟合效果,并对比所提模型和变剪胀角模型对加载过程剪胀角演化的模拟效果;最后,将修正Rowe剪胀关系与修正剑桥模型耦合,与经典的修正剑桥模型的模拟结果和试验数据进行对比校验. 研究结果表明:由于黏聚力的影响,基于纯摩擦假设推导的经典应力-剪胀关系无法准确描述含黏聚力岩土材料的应力-剪胀响应;修正Rowe剪胀关系模型可以有效反映岩石的应力-剪胀响应,并能模拟数据中的“回旋勾”现象;本文提出的应力-剪胀关系模型不仅形式简洁,且参数数量较变剪胀角模型少;应用所提修正Rowe剪胀关系模型可以提升本构模型在变形预测方面的准确性.

     

  • 图 1  砂土/大坝堆填料的应力-剪胀关系对比

    Figure 1.  Comparison of stress-dilatancy rules for sand and dam fill

    图 2  水泥/生物水泥加固砂土的应力-剪胀关系对比

    Figure 2.  Comparison of stress-dilatancy rules for cement-enhanced and biocement-enhanced sands

    图 3  软岩/硬岩的应力-剪胀关系对比

    Figure 3.  Comparison of stress-dilatancy rules for a soft rock and a hard rock

    图 4  含黏聚力材料的应力-剪胀特性

    Figure 4.  Stress-dilatancy characteristics of materials with cohesive force

    图 5  改进Rowe应力-剪胀关系特征

    Figure 5.  Characteristics of modified Rowe’s stress-dilatancy rule

    图 6  改进Rowe关系与数据对比

    Figure 6.  Comparison between modified Rowe rule and experimental data

    图 7  不同模型预测剪胀角与试验数据对比

    Figure 7.  Comparison between dilatancy angle predicted by different models and experimental data

    图 8  修正应力-剪胀关系校验及应用

    Figure 8.  Validation and application of modified stress-dilatancy rule

    表  1  3种典型应力-剪胀关系

    Table  1.   Three classical stress-dilatancy rules

    典型应力-剪胀关系 $ {{{W}}_e} $形式 $ {{\varPhi }} $形式 $ {{\varPsi }} $形式 应力-剪胀关系形式
    剑桥模型[8] $p{\mathrm{d}}\varepsilon _{{{v}}}^{{\mathrm{p}}} + q{\mathrm{d}}\varepsilon _{{\gamma } }^{{\mathrm{p}}}$ $Mp{\mathrm{d}}\varepsilon _{{\text{γ} } }^{{\mathrm{p}}}$ $d = M - \eta $
    修正剑桥模型[10] $\dfrac{1}{2}{p_{{\mathrm{c}}}}\sqrt {{{\left( {{\mathrm{d}}\varepsilon _{{{v}}}^{{\mathrm{p}}}} \right)}^2} + {{\left( {M{\mathrm{d}}\varepsilon _{{\gamma } }^{{\mathrm{p}}}} \right)}^2}} $ $ \dfrac{1}{2}{p_{{\mathrm{c}}}}{\mathrm{d}}\varepsilon _{{\mathrm{v}}}^{{\mathrm{p}}} $ $d = \dfrac{{{M^2} - {\eta ^2}}}{{2\eta }}$
    Rowe[6] $Mp{\mathrm{d}}\varepsilon _{{\gamma } }^{{\mathrm{p}}} + \dfrac{{2q - 3p}}{9}M{\mathrm{d}}\varepsilon _{{{v}}}^{{\mathrm{p}}}$ $d = \dfrac{{9\left( {M - \eta } \right)}}{{9 + 3M - 2M\eta }}$
    下载: 导出CSV

    表  2  改进Rowe准则参数

    Table  2.   Parameters of modified Rowe rule

    岩石 $E$ $b$ $ \xi $ $ \omega $
    中粒砂岩 30 0.30 6 0.10
    Eibenstock II花岗岩 50 0.10 4.80 0.20
    下载: 导出CSV

    表  3  模拟所用参数

    Table  3.   Parameters for simulation

    $\mu $ $\kappa $ $\lambda $ $M$ ${p_{{{\mathrm{c}}0}}}$/MPa ${v_0}$ $ \xi $ $\omega $ $E$ $b$
    0.23 0.015 0.15 1.10 70 1.258 4 0.15 0.05 20
    下载: 导出CSV
  • [1] 梁明纯,苗胜军,蔡美峰,等. 考虑剪胀特性和峰后形态的岩石损伤本构模型[J]. 岩石力学与工程学报,2021,40(12): 2392-2401.

    LIANG Mingchun, MIAO Shengjun, CAI Meifeng, et al. A damage constitutive model of rock with consideration of dilatation and postpeak shape of the stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2392-2401.
    [2] 陈静,高睿,刘洋泽鹏,等. 黏土脏污对道砟集料的应力-剪胀关系影响[J]. 西南交通大学学报,2022,57(6): 1201-1207.

    CHEN Jing, GAO Rui, LIU Yangzepeng, et al. Effect of clay contamination on stress-dilatancy relationships of ballast aggregate[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1201-1207.
    [3] 高彦芳,任战利,姜海龙,等. 考虑剪胀性和应变软化的油砂非线性弹性模型[J]. 地下空间与工程学报,2023,19(1): 43-50.

    GAO Yanfang, REN Zhanli, JIANG Hailong, et al. A nonlinear elastic model for oil sands considering shear dilation and strain softening[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 43-50.
    [4] 寇昊,何川,蒙伟等. 考虑残余强度的层状岩体损伤演化规律[J/OL]. 西南交通大学学报:1-8.

    KOU Hao, HE Chuan, MENG Wei, et al. Damage evolution law of layered rock mass considering residual strength[J/OL]. Journal of Southwest Jiaotong University: 1-8.
    [5] 李修磊,陈洪凯,张金浩. 考虑初始空隙压密的岩石变形全过程本构模型[J]. 西南交通大学学报,2022,57(2): 314-321.

    LI Xiulei, CHEN Hongkai, ZHANG Jinhao. Statistical damage model for whole deformation and failure process of rock considering initial void closure[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 314-321.
    [6] ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269(1339): 500-527.
    [7] ZHANG J, SALGADO R. Stress–dilatancy relation for Mohr–Coulomb soils following a non-associated flow rule[J]. Géotechnique, 2010, 60(3): 223-226.
    [8] ROSCOE K H, SCHOFIELD A N. Mechanical behaviour of an idealized'wet'clay[C]//Proc 3rd Eur Conf Soil Mech. Wiesbaden: [s. n. ]. 1963: 47-54.
    [9] TAYLOR D W. Fundamentals of soil mechanics[M]. New York: J. Wiley, 1948.
    [10] MUIR WOOD D. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [11] TSEGAYE A B, BENZ T. Plastic flow and state-dilatancy for geomaterials[J]. Acta Geotechnica, 2014, 9(2): 329-342. doi: 10.1007/s11440-013-0290-z
    [12] TSEGAYE A B. A new stress-dilatancy framework for the modelling of rocks and rock masses[J]. IOP Conference Series: Earth and Environmental Science, 2021, 727(1): 012014.1-012014.10.
    [13] JEFFERIES M. Plastic work and isotropic softening in unloading[J]. Géotechnique, 1997, 47(5): 1037-1042.
    [14] NOVA R. A constitutive model under monotonic and cyclicloading[C]// Soil mechanics—transient and cyclic loads. New York: John Wiley & Sons Ltd, 1982: 343-373.
    [15] XIAO Y, LIU H L, ZHU J G, et al. Dilatancy equation of rockfill material under the true triaxial stress condition[J]. Science China Technological Sciences, 2011, 54(1): 175-184. doi: 10.1007/s11431-010-4201-3
    [16] 石北啸,刘赛朝,吴鑫磊,等. 考虑颗粒破碎的堆石料剪胀特性研究[J]. 岩土工程学报,2021,43(7): 1360-1366.

    SHI Beixiao, LIU Saichao, WU Xinlei, et al. Dilatancy behaviors of rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1360-1366.
    [17] 郭万里,朱俊高,彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报,2018,40(6): 1103-1110.

    GUO Wanli, ZHU Jungao, PENG Wenming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110.
    [18] 郭万里,朱俊高,彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报,2018,40(6): 1103-1110.

    GUO Wanli, ZHU Jungao, PENG Wenming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110.
    [19] GUO W L, ZHU J G. Particle breakage energy and stress dilatancy in drained shear of rockfills[J]. Géotechnique Letters, 2017, 7(4): 304-308.
    [20] JIN W F, TAO Y, CHEN R Z. Capturing the turning hook of stress-dilatancy curve of crushable calcareous sand[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1269.1-1269.19.
    [21] ALEJANO L R, ALONSO E. Considerations of the dilatancy angle in rocks and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 481-507. doi: 10.1016/j.ijrmms.2005.01.003
    [22] WALTON G, ARZÚA J, ALEJANO L R, et al. A laboratory-testing-based study on the strength, deformability, and dilatancy of carbonate rocks at low confinement[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 941-958. doi: 10.1007/s00603-014-0631-8
    [23] ZHAO R, LI C G. A new dilation angle model for rocks[J]. Rock Mechanics and Rock Engineering, 2022, 55(9): 5345-5354. doi: 10.1007/s00603-022-02835-6
    [24] MAS D, CHEMENDA A I. Dilatancy factor constrained from the experimental data for rocks and rock-type material[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 136-144. doi: 10.1016/j.ijrmms.2013.12.014
    [25] RAHJOO M, EBERHARDT E. Development of a 3-D confinement-dependent dilation model for brittle rocks; Part 1, derivation of a Cartesian plastic strain increments ratios approach for non-potential flow rules[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 145: 104668.1-104668.27.
    [26] RAHJOO M, EBERHARDT E. Development of a 3-D confinement-dependent dilation model for brittle rocks; part 2, formulation and parameterization based on the Cartesian plastic strain increments ratios approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 148: 104773.1-104773.30.
    [27] ZHAO X G, CAI M. A mobilized dilation angle model for rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 368-384. doi: 10.1016/j.ijrmms.2009.12.007
    [28] CHANG C S, DENG Y B. Energy equation and stress–dilatancy relationship for sand[J]. Acta Geotechnica, 2022, 17(7): 2675-2696. doi: 10.1007/s11440-021-01389-1
    [29] LIU J M, ZOU D G, KONG X J, et al. Stress-dilatancy of Zipingpu gravel in triaxial compression tests[J]. Science China Technological Sciences, 2016, 59(2): 214-224. doi: 10.1007/s11431-015-5919-8
    [30] SZYPCIO Z, DOŁŻYK-SZYPCIO K. The stress-dilatancy behaviour of artificially bonded soils[J]. Materials, 2022, 15(20): 7068.1-7068.13.
    [31] WU S F, LI B, CHU J. Stress-dilatancy behavior of MICP-treated sand[J]. International Journal of Geomechanics, 2021, 21(3): 04020264.1-04020264.12.
    [32] TAN X, KONIETZKY H, FRÜHWIRT T. Numerical simulation of triaxial compression test for brittle rock sample using a modified constitutive law considering degradation and dilation behavior[J]. Journal of Central South University, 2015, 22(8): 3097-3107. doi: 10.1007/s11771-015-2846-6
    [33] HU D W, ZHANG F, SHAO J F. Experimental study of poromechanical behavior of saturated claystone under triaxial compression[J]. Acta Geotechnica, 2014, 9(2): 207-214. doi: 10.1007/s11440-013-0259-y
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-09-06
  • 网络出版日期:  2024-07-23

目录

    /

    返回文章
    返回