• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于逆向分析的车辆对碰事故再现系统

刘永涛 高隆鑫 方腾源 闫星培 杨京帅 滑海宁

刘永涛, 高隆鑫, 方腾源, 闫星培, 杨京帅, 滑海宁. 基于逆向分析的车辆对碰事故再现系统[J]. 西南交通大学学报, 2025, 60(3): 671-678. doi: 10.3969/j.issn.0258-2724.20240169
引用本文: 刘永涛, 高隆鑫, 方腾源, 闫星培, 杨京帅, 滑海宁. 基于逆向分析的车辆对碰事故再现系统[J]. 西南交通大学学报, 2025, 60(3): 671-678. doi: 10.3969/j.issn.0258-2724.20240169
LIU Yongtao, GAO Longxin, FANG Tengyuan, YAN Xingpei, YANG Jingshuai, HUA Haining. Research on Vehicle Head-on Collision Accident Reconstruction System Based on Inverse Analysis[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 671-678. doi: 10.3969/j.issn.0258-2724.20240169
Citation: LIU Yongtao, GAO Longxin, FANG Tengyuan, YAN Xingpei, YANG Jingshuai, HUA Haining. Research on Vehicle Head-on Collision Accident Reconstruction System Based on Inverse Analysis[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 671-678. doi: 10.3969/j.issn.0258-2724.20240169

基于逆向分析的车辆对碰事故再现系统

doi: 10.3969/j.issn.0258-2724.20240169
基金项目: 陕西省“两链”融合重点专项揭榜挂帅项目(2023JBGS-13);陕西省自然科学基础研究计划(2023-JC-QN-0664);长安大学中央高校基本科研业务费专项资金(300102223204)
详细信息
    作者简介:

    刘永涛(1989—),男,副教授,博士,研究方向为交通事故防控技术,E-mail:liuyongtao86@163.com

    通讯作者:

    滑海宁(1986—),男,工程师,博士研究生,研究方向为道路交通安全,E-mail:hhning@chd.edu.cn

  • 中图分类号: X928.03

Research on Vehicle Head-on Collision Accident Reconstruction System Based on Inverse Analysis

  • 摘要:

    为提高车辆对碰事故再现的精度与有效性,基于动量与动量矩守恒定理,建立车辆碰撞速度计算方程组,并通过碰撞坐标系旋转变换,构建车辆碰撞瞬间的解析模型;其次,将碰撞事故过程分阶段进行分析,构建车辆三维车身动力学模型;最后,基于3D MAX和OpenGL图形技术以及基础数据库技术,设计碰撞事故重建系统,并通过真实对向碰撞(对碰)事故案例进行仿真分析,以验证系统的精度和有效性. 研究结果表明:该系统模拟车速的平均相对误差小于5.1%,车辆运动轨迹吻合程度的平均相关性为0.85,有效解决了模拟车辆碰撞瞬间逆向不确定性方程组解析化难题.

     

  • 图 1  车辆碰撞分析模型

    Figure 1.  Vehicle collision analysis model

    图 2  碰撞事故显示界面计算

    Figure 2.  Calculation of collision accident display interface

    图 3  3D模拟再现帧

    Figure 3.  Frame reconstructed via 3D simulation

    图 4  行驶记录仪显示的实际车速

    Figure 4.  Actual speed displayed by dashboard camera

    图 5  车速统计图

    Figure 5.  Diagram of vehicle speed

    图 6  车辆运动轨迹简化图

    Figure 6.  Simplified diagram of vehicle trajectory

    图 7  轨迹吻合度相关系数

    Figure 7.  Correlation coefficient of trajectory alignment

    表  1  不同道路类型的系统坐标系建立方式

    Table  1.   Establishment methods for coordinate system for different road types

    道路类型 系统坐标轴特征
    东西向道路 x 轴位于车道中心线,y 轴垂直于车道
    南北向道路 x 轴垂直于车道,y 轴位于车道中心线
    T型道路  x 轴在东西向车道中心线,y 轴在南北向车道中心线
    十字形道路  x 轴在东西向车道中心线,y 轴在南北向车道中心线
    直弯组合道路  坐标原点在直角弯道交汇处,某一轴在车道中心线
    下载: 导出CSV

    表  2  事故主要计算数据

    Table  2.   Main calculation data of accident

    参数名称 主要参与的计算阶段及原理
    质量/kg  全阶段均参与计算;动能定理、动量守恒等
    碰撞时左前轮坐标/m  第二、三阶段;动量、动量矩守恒
    停止时左前轮坐标/m  第二、三阶段;动量、动量矩守恒
     碰撞时车身与 x 轴向
    夹角/(°)
     第二、三阶段;动量、动量矩守恒
     停止时车身与 x 轴向
    夹角/(°)
     第二、三阶段;动量、动量矩守恒
     车身碰撞点与车身最前右点间横向距离/m 第二阶段;动量守恒
    碰撞前制动距离/m 第一阶段;车辆运动力学
    路面附着系数 第一、三阶段;车辆运动力学
    下载: 导出CSV
  • [1] 国家统计局. 2022年中国统计年鉴[M]. 北京:中国统计出版社,2023.
    [2] 朱彤,魏雯,林淼,等. 道路交通安全反事实仿真评估技术综述与展望[J]. 中国安全科学学报,2022,32(7): 128-135.

    ZHU Tong, WEI Wen, LIN Miao, et al. Review and prospect of counterfactual simulation for road traffic safety[J]. China Safety Science Journal, 2022, 32(7): 128-135.
    [3] 何庆龄,裴玉龙,刘静,等. 基于WOA-LSSVM的城市道路交通事故严重度识别[J]. 中国安全生产科学技术,2023,19(9): 176-182.

    HE Qingling, PEI Yulong, LIU Jing, et al. Recognition of urban road traffic accident severity based on WOA-LSSVM[J]. Journal of Safety Science and Technology, 2023, 19(9): 176-182.
    [4] 罗文慧,蔡凤田,吴初娜,等. 基于文本挖掘的道路运输安全风险源辨识模型[J]. 西南交通大学学报,2021,56(1): 147-152.

    LUO Wenhui, CAI Fengtian, WU Chuna, et al. Text-mining based risk source identification model for transportation safety[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 147-152.
    [5] 何永旺,曾晓锋,闫文,等. 基于PC-Crash软件的道路交通事故再现技术研究进展[J]. 法医学杂志,2018,34(3): 276-279,285. doi: 10.12116/j.issn.1004-5619.2018.03.012

    HE Yongwang, ZENG Xiaofeng, YAN Wen, et al. Research progress of traffic accident reconstruction technology based on PC-crash software[J]. Journal of Forensic Medicine, 2018, 34(3): 276-279,285. doi: 10.12116/j.issn.1004-5619.2018.03.012
    [6] 黎晓龙. 基于EDR车辆事件数据的PC-CRASH交通事故重建方法验证研究[J]. 中国人民公安大学学报(自然科学版),2020,26(3): 41-48. doi: 10.3969/j.issn.1007-1784.2020.03.007

    LI Xiaolong. Research on the validation of PC-CRASH traffic accident reconstruction method based on EDR vehicle incident data[J]. Journal of People’s Public Security University of China (Science and Technology), 2020, 26(3): 41-48. doi: 10.3969/j.issn.1007-1784.2020.03.007
    [7] 童小波,刘盛雄,尹志勇,等. 基于PC Crash的摩托车-行人碰撞事故分析重建[J]. 重庆理工大学学报(自然科学),2018,32(2): 54-62.

    TONG Xiaobo, LIU Shengxiong, YIN Zhiyong, et al. Analysis and reconstruction of motorcycle-pedestrian crash based on PC crash[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(2): 54-62.
    [8] 黄西子,黄淑萍. 高速道路追尾感知PC-Crash仿真与统计建模[J]. 中国安全科学学报,2020,30(5): 143-148.

    HUANG Xizi, HUANG Shuping. Freeway rear-end perception model based on PC-Crash simulation and statistical analysis[J]. China Safety Science Journal, 2020, 30(5): 143-148.
    [9] 张文会,苏永民,孙舒蕊. 偏置追尾事故车辆运动学参数仿真研究[J]. 系统仿真学报,2020,32(5): 848-855.

    ZHANG Wenhui, SU Yongmin, SUN Shurui. Simulation and analysis of kinematic parameters of vehicle offset and rear-end collision accident[J]. Journal of System Simulation, 2020, 32(5): 848-855.
    [10] SCHLÖGL M, STÜTZ R. Methodological considerations with data uncertainty in road safety analysis[J]. Accident Analysis & Prevention, 2019, 130: 136-150.
    [11] ZHENG L L, DING T Q, XI J F, et al. Simulation analysis of traffic accidents reconstruction based on reverse-reasoning method[C]//2009 International Conference on Electronic Commerce and Business Intelligence. Beijing: IEEE, 2009: 168-171.
    [12] CAO Y, YE X W, HAN G. A method for calculating the velocity of corner-to-corner rear-end collisions of vehicles based on collision deformation analysis[J]. Applied Sciences, 2021, 11(22): 10964.1-10964.11. doi: 10.3390/app112210964
    [13] CAO Y, LUO Y F. The synthesized method based on classical mechanics and finite element for vehicle collision accident reconstruction analysis[J]. International Journal of Crashworthiness, 2022, 27(6): 1790-1797. doi: 10.1080/13588265.2021.2008741
    [14] 刘永涛,方腾源,赵俊玮,等. 基于逆算法与试算法的车辆碰撞车速对比研究[J]. 中国安全科学学报,2021,31(1): 138-144.

    LIU Yongtao, FANG Tengyuan, ZHAO Junwei, et al. Comparative study on vehicle-to-vehicle collision speed based on inverse algorithm and trial algorithm[J]. China Safety Science Journal, 2021, 31(1): 138-144.
    [15] 王成铭,范颖,邹冬华,等. 基于遗传算法的高精度事故重建与损伤分析[J]. 汽车工程,2021,43(12): 1787-1792.

    WANG Chengming, FAN Ying, ZOU Donghua, et al. High-accuracy accident reconstruction and injury analysis based on genetic algorithm[J]. Automotive Engineering, 2021, 43(12): 1787-1792.
    [16] AHMED S S, COHEN J, ANASTASOPOULOS P C. A correlated random parameters with heterogeneity in means approach of deer-vehicle collisions and resulting injury-severities[J]. Analytic Methods in Accident Research, 2021, 30: 100160.1-100160.17. doi: 10.1016/j.amar.2021.100160
    [17] PROCHOWSKI L, ZIUBIŃSKI M, DZIEWIECKI K, et al. Impact energy and the risk of injury to motorcar occupants in the front-to-side vehicle collision[J]. Nonlinear Dynamics, 2022, 110(4): 3333-3354. doi: 10.1007/s11071-022-07779-8
    [18] DEPRIANTO E. Pre-collision safety risk assessment using multi-body simulation[D]. Malaysia: University of Malaya, 2021.
    [19] BRACH M, BRACH R M, MASON J. Vehicle accident analysis and reconstruction methods[M]. Pennsylvania: SAE International, 2022.
    [20] WANG C, WANG Z P, ZHANG L, et al. Post-impact stability control for road vehicles: state-of-the-art methodologies and perspectives[J]. IEEE Transactions on Intelligent Transportation Systems, 25(8): 8295-8312.
    [21] GIM G H. Critical issue of tire force & moment model[R]. Seoul: [s.n.], 2023.
    [22] GIM G H. The smart tire technology for AI virtual Process. ResearchGate[R]. Seoul: [s.n.], 2022.
    [23] 张健,张鑫,李江. 碰撞前车速计算误差的成因及处理方法[J]. 西南交通大学学报,2019,54(5): 1073-1078. doi: 10.3969/j.issn.0258-2724.20170562

    ZHANG Jian, ZHANG Xin, LI Jiang. Origin and solution of pre-crash speed calculation error[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1073-1078. doi: 10.3969/j.issn.0258-2724.20170562
    [24] 中华人民共和国公安部. 道路交通事故现场图绘制:GA/T 49—2019[S]. 北京:中国标准出版社,2019.
    [25] 李璐江,路深,卜晓兵,等. MPDB测试与车对车碰撞相关性研究[J]. 计算机仿真,2023,40(2): 161-166. doi: 10.3969/j.issn.1006-9348.2023.02.029

    LI Lujiang, LU Shen, BU Xiaobing, et al. Research on correlation between MPDB test and vehicle to vehicle crash[J]. Computer Simulation, 2023, 40(2): 161-166. doi: 10.3969/j.issn.1006-9348.2023.02.029
    [26] 唐洪斌,张君媛,刘国军. 正面碰撞等级预估方法[J]. 汽车工程,2022,44(3): 392-398.

    TANG Hongbin, ZHANG Junyuan, LIU Guojun. A method for predicting frontal crash grade[J]. Automotive Engineering, 2022, 44(3): 392-398.
    [27] ZIAKOPOULOS A, TSELENTIS D, KONTAXI A, et al. A critical overview of driver recording tools[J]. Journal of Safety Research, 2020, 72: 203-212. doi: 10.1016/j.jsr.2019.12.021
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  77
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-04
  • 修回日期:  2024-12-19
  • 网络出版日期:  2025-03-29
  • 刊出日期:  2025-01-02

目录

    /

    返回文章
    返回