Bearing Characteristics of X-Shaped Sleeper Based on Scaled Test and Discrete Element Simulation
-
摘要:
为研究新型X形轨枕道床承载力和横向阻力特性,开展X形轨枕与Ⅲ型轨枕道床刚度和横向阻力的缩尺模型试验,通过离散元法建立有砟轨道三维模型,并从细观上对比分析2种轨枕道床的竖向荷载传递机制及横向阻力. 研究结果表明:在最大竖向荷载时,X形轨枕道床的竖向位移(刚度)相较于Ⅲ型轨枕降低了约26.3%(提高了约46.6%);与Ⅲ型轨枕相比,X形轨枕的横向极限阻力提高了约22.4%,有效提高了轨道横向稳定性; X形轨枕与枕间道砟的接触面积和应力均明显增加,轨枕接触力沿X形4个夹角范围扩散,使得枕间道砟充分参与分担荷载;由于X形轨枕的叉形结构能够提升枕间道砟的参与,使得道床刚度和横向阻力分别提升约29.2%和31.6%,与试验结论较接近.
Abstract:To investigate the trackbed bearing capacity and lateral resistance characteristics of a new X-shaped sleeper, scaled tests comparing the stiffness and lateral resistance between X-shaped and Type Ⅲ sleepers were conducted. A 3D model of a ballast track was established by the discrete element method to analyze the vertical load transmission mechanism and lateral resistance of these two types of sleepers at a micro level. The results indicate that at the maximum vertical load, the X-shaped sleepers significantly reduce vertical displacement (stiffness) by approximately 26.3% compared to Type Ⅲ sleepers (an increase of about 46.6%). Furthermore, the ultimate lateral resistance of the X-shaped sleeper is increased by 22.4%, which effectively improves the lateral stability of the track. The X-shaped sleepers exhibit a substantial increase in the contact area and stress with ballast between the sleepers. The contact forces on the X-shaped sleeper are distributed over four angular segments, making the ballast between the sleepers fully participate in the load sharing. Because the structure of the X-shaped sleeper can increase the participation of the ballast between the sleepers, the stiffness and transverse resistance of the trackbed are increased by about 29.2% and 31.6%, respectively, which is close to the experimental conclusion.
-
Key words:
- railway sleeper /
- discrete element method /
- trackbed stiffness /
- lateral resistance /
- scaled test
-
表 1 3D打印材料(PLA)参数
Table 1. 3D printing material (PLA) parameters
参数 线径/mm 密度/(g·cm−3) 熔点/(℃) 拉伸强度/MPa 断裂伸长率/% 弹性模量/MPa 取值 1.75 1.26 176 48 7 3500 表 2 缩尺试验相似数值
Table 2. Similarity parameters of scaled test
物理量 相似关系 相似常数 长度/位移/m CL 8.7 道砟密度/(kg·m−3) Cρ 1.0 内摩擦角 Cφ 1.0 轨枕弹性模量/MPa CE 10.3 轨枕集中荷载/N CF=CECL2 779.6 表 3 模型物理参数与接触参数
Table 3. Physical and contact parameters of model
模型部件 泊松比 剪切模量/
(×1010 Pa)密度/ (kg·m−3) 摩擦系数 道砟 0.30 2.0 2700 0.55 轨枕 0.23 1.5 2800 0.85 钢轨 0.23 1.5 7800 0.85 -
[1] 段海滨. 再生复合轨枕有砟轨道垂向动力特性研究[D]. 成都:西南交通大学,2017. [2] 闫雪,沈毓婷,耿浩,等. 弹性轨枕 + 道砟垫有砟轨道疲劳性能试验研究[J]. 铁道标准设计,2018,62(12): 40-45.YAN Xue, SHEN Yuting, GENG Hao, et al. Experimental research on fatigue behavior of elastic sleeper ballast track with under-ballast mat[J]. Railway Standard Design, 2018, 62(12): 40-45. [3] 刘晓春,陈佳琦,罗延亮,等. 钢管混凝土双块式轨枕无砟轨道结构疲劳性能试验研究[J]. 铁道科学与工程学报,2024,21(1): 106-115.LIU Xiaochun, CHEN Jiaqi, LUO Yanliang, et al. Experimental study on fatigue performance of ballastless track with concrete-filled tube connected double-block sleepers[J]. Journal of Railway Science and Engineering, 2024, 21(1): 106-115. [4] HAYANO K, KOIKE Y, NAKAMURA T, et al. Effects of sleeper shape on lateral resistance of railway ballasted tracks[C]//Advances in Soil Dynamics and Foundation Engineering. Shanghai: American Society of Civil Engineers, 2014: 491-499. [5] 杜香刚. 重载铁路新型高稳定性预应力混凝土轨枕的研发[J]. 铁道建筑,2016,56(3): 113-117. doi: 10.3969/j.issn.1003-1995.2016.03.28DU Xianggang. Research and development of new-type prestressed concrete sleeper with high stability for heavy haul railway[J]. Railway Engineering, 2016, 56(3): 113-117. doi: 10.3969/j.issn.1003-1995.2016.03.28 [6] 井国庆,付豪,贾文利,等. 框架优化型Ⅲc轨枕道床横向阻力试验研究[J]. 西南交通大学学报,2018,53(4): 727-732. doi: 10.3969/j.issn.0258-2724.2018.04.009JING Guoqing, FU Hao, JIA Wenli, et al. Experimental study on lateral resistance of optimized ⅲc sleeper with different frame types[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 727-732. doi: 10.3969/j.issn.0258-2724.2018.04.009 [7] 郭云龙,王新雨,廉栋,等. 摩擦型轨枕道床的横向阻力研究[J]. 西南交通大学学报,2022,57(2): 301-305,368. doi: 10.3969/j.issn.0258-2724.20200464GUO Yunlong, WANG Xinyu, LIAN Dong, et al. Lateral resistance of frictional sleeper ballast bed[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 301-305,368. doi: 10.3969/j.issn.0258-2724.20200464 [8] JING G Q, FU H, AELA P. Lateral displacement of different types of steel sleepers on ballasted track[J]. Construction and Building Materials, 2018, 186: 1268-1275. doi: 10.1016/j.conbuildmat.2018.07.095 [9] ZAKERI J A, TALEBI R. Experimental investigation into the effect of steel sleeper vertical stiffeners on railway track lateral resistance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(1): 104-110. doi: 10.1177/0954409715622500 [10] 井国庆,贾文利,强伟乐,等. 有砟道床梯形轨枕横向阻力试验与构成分析[J]. 西南交通大学学报,2019,54(1): 9-13.JING Guoqing, JIA Wenli, QIANG Weile, et al. Ladder sleeper lateral resistance test and contribution analysis of ballasted track[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 9-13. [11] JING G Q, AELA P, FU H, et al. Numerical and experimental analysis of lateral resistance of biblock sleeper on ballasted tracks[J]. International Journal of Geomechanics, 2020, 20(6): 04020051.1-04020051.17. [12] LIEGNER N. Investigation of the internal forces of the first track constructed with y-shape steel sleepers under operation in Hungary summary of results of research[J]. Periodica Polytechnica Civil Engineering, 2004, 48(1/2): 115-130. [13] 马春生. 高速铁路有砟道床质量评价指标优化方法研究[J]. 铁道标准设计,2016,60(5): 20-24.MA Chunsheng. Research on evaluation index optimization method of high-speed railway ballasted bed[J]. Railway Standard Design, 2016, 60(5): 20-24. [14] 陈成,李建峰,王磊,等. 一种X形抗滑动轨枕:CN209686156U[P]. 2019-11-26. [15] 陈成,王威,芮瑞,等. 装配式可调间距的X形抗滑动轨枕研究[J]. 铁道标准设计,2023,67(2): 49-54.CHEN Cheng, WANG Wei, RUI Rui, et al. Study on X-shaped anti-sliding sleeper with adjustable spacing[J]. Railway Standard Design, 2023, 67(2): 49-54. [16] 陈成,唐子桉,芮瑞,等. 传统轨枕与新型X轨枕下道床劣化及动力特性研究[J]. 北京交通大学学报,2021,45(6): 117-124. doi: 10.11860/j.issn.1673-0291.20210047CHEN Cheng, TANG Zian, RUI Rui, et al. Study on dynamic behavior and ballast degradation using the traditional sleeper and new X-shape sleeper[J]. Journal of Beijing Jiaotong University, 2021, 45(6): 117-124. doi: 10.11860/j.issn.1673-0291.20210047 [17] 万轶,林红松,刘学毅,等. 有碴轨道道床纵向阻力缩尺模型试验研究[J]. 铁道建筑,2006,46(5): 80-81. doi: 10.3969/j.issn.1003-1995.2006.05.030WAN Yi, LIN Hongsong, LIU Xueyi, et al. Experimental study on scale model of longitudinal resistance of ballast track bed[J]. Railway Engineering, 2006, 46(5): 80-81. doi: 10.3969/j.issn.1003-1995.2006.05.030 [18] SHAER A, DUHAMEL D, SAB K, et al. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains[J]. Journal of Sound and Vibration, 2008, 316(1/2/3/4/5): 211-233. [19] 邹锦华,王荣辉,魏德敏. 车辆—轨道系统缩尺模型振动试验研究[J]. 铁道建筑,2011,51(8): 112-116. doi: 10.3969/j.issn.1003-1995.2011.08.036ZOU Jinhua, WANG Ronghui, WEI Demin. Experimental study on vibration of scale model of vehicle-track system[J]. Railway Engineering, 2011, 51(8): 112-116. doi: 10.3969/j.issn.1003-1995.2011.08.036 [20] 朱建华. 基于相似理论的列车-轨道力学特性分析试验平台研究[D]. 北京:北京交通大学,2022. [21] 中华人民共和国铁道部. 铁路碎石道砟:TB/T 2140—2008[S]. 北京:中国铁道出版社,2008. [22] LIM W L. Mechanics of railway ballast behavior[D]. Nottingham: University of Nottingham, 2004. [23] 李朋. 铁路碎石道床车致垂向振动特性分析[D]. 成都:西南交通大学,2020. [24] ZAKERI J A, HASSANREZAEI H. Experimental investigation on effect of winged sleeper on lateral resistance of ballasted track[J]. Scientia Iranica, 2021, 28(2): 656-665. [25] KOIKE Y, NAKAMURA T, HAYANO K, et al. Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks[J]. Soils and Foundations, 2014, 54(3): 502-514. doi: 10.1016/j.sandf.2014.04.014 [26] LE PEN L M, POWRIE W. Contribution of base, crib, and shoulder ballast to the lateral sliding resistance of railway track: a geotechnical perspective[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(2): 113-128. doi: 10.1177/0954409710397094