• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

循环载荷作用下LS-FA-211001吸力锚时变可靠性分析

杨顺奇 钱华明 钟泽棋 徐国华 黄洪钟

杨顺奇, 钱华明, 钟泽棋, 徐国华, 黄洪钟. 循环载荷作用下LS-FA-211001吸力锚时变可靠性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230185
引用本文: 杨顺奇, 钱华明, 钟泽棋, 徐国华, 黄洪钟. 循环载荷作用下LS-FA-211001吸力锚时变可靠性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230185
YANG Shunqi, QIAN Huaming, ZHONG Zeqi, XU Guohua, HUANG Hongzhong. Time-Dependent Reliability Analysis of LS-FA-211001 Suction Anchor under Cyclic Load[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230185
Citation: YANG Shunqi, QIAN Huaming, ZHONG Zeqi, XU Guohua, HUANG Hongzhong. Time-Dependent Reliability Analysis of LS-FA-211001 Suction Anchor under Cyclic Load[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230185

循环载荷作用下LS-FA-211001吸力锚时变可靠性分析

doi: 10.3969/j.issn.0258-2724.20230185
基金项目: 国家自然科学基金项目(51875089)
详细信息
    作者简介:

    杨顺奇(1982—),男,博士研究生,研究方向为水下试验与测试总体技术和水下航行器总体技术,E-mail:shunqiyang@foxmail.com

    通讯作者:

    黄洪钟(1963—),男,教授,研究方向为可靠性设计,智能优化设计,状态监测、故障诊断与寿命预测,E-mail:hzhuang@uestc.edu.cn

  • 中图分类号: TB1

Time-Dependent Reliability Analysis of LS-FA-211001 Suction Anchor under Cyclic Load

  • 摘要:

    为有效评估在使用过程中LS-FA-211001吸力锚的可靠性水平,考虑外部载荷的累积效应,建立循环载荷作用下的时变可靠性模型;结合LS-FA-211001吸力锚的不确定性量化数据,对其展开时变可靠性分析;利用蒙特卡罗模拟(MCS)方法对吸力锚可靠度进行验证. 结果表明:在可靠度要求95%以上的条件下,LS-FA-211001吸力锚的寿命即使在恶劣勘探点也能达到100次;同时,在循环载荷不同作用次数下,本文建立的吸力锚时变可靠性模型与MCS方法评估出的可靠度结果相比,误差不超过2.15%,验证了本文方法的有效性.

     

  • 图 1  吸力锚及其系统结构示意

    Figure 1.  Suction anchor and its system

    图 2  吸力锚受力情况

    Figure 2.  Force of suction anchor

    图 3  勘探点平面图

    Figure 3.  Planar graph of exploratory points

    图 4  抗拔力计算流程

    Figure 4.  Calculation flow of pulling resistance

    图 5  不同勘探点处吸力锚抗拔力的不确定性量化结果

    Figure 5.  Uncertainty quantification results of pulling resistance of suction anchor at different exploratory points

    图 6  锚链拉力竖直分量${F_{{\mathrm{ty}}}}$的不确定性量化结果

    Figure 6.  Uncertainty quantification results of vertical component${F_{{\mathrm{ty}}}}$of anchor chain tension

    图 7  不同作用次数下各勘探点处的时变可靠度结果

    Figure 7.  Time-dependent reliability results of each exploratory point under different frequency of action

    图 8  勘探点A处的时变可靠度验证结果

    Figure 8.  Results of time-dependent reliability verification at exploratory point A

    表  1  各勘探点附近的抗拔力值

    Table  1.   Pulling resistance values near each exploratory point kN

    组号 A C G M O
    1 1330.9777 2007.6882 2247.3961 1826.8866 1835.3776
    2 1339.7254 1998.8052 2261.1515 1820.1196 1840.0185
    3 1336.7282 1982.7419 2274.1373 1814.4576 1843.6222
    4 1330.8861 1964.7617 2286.1875 1809.4007 1846.4546
    5 1323.8135 1947.6050 2297.1344 1804.6813 1848.9262
    6 1319.7456 1954.0500 2191.5069 1800.0756 1851.5450
    7 1319.9079 1970.4304 2187.9786 1795.7828 1854.8203
    8 1322.8437 1987.0357 2182.8988 1792.0530 1859.1009
    9 1328.1747 2003.6953 2176.1155 1791.3837 1864.3240
    10 1338.2259 2020.2961 2167.4843 1791.0338 1869.6512
    下载: 导出CSV

    表  2  各勘探点附近抗拔力分布参数

    Table  2.   Parameters of pulling resistance distribution near each exploratory point

    勘探点 u $\sigma $
    A 1329.1029 7.4612
    C 1983.7110 24.2016
    G 2227.1991 48.0464
    M 1804.5875 12.7894
    O 1851.3841 10.7934
    下载: 导出CSV
  • [1] 王胤,朱兴运,杨庆. 考虑砂土渗透性变化的吸力锚沉贯及土塞特性研究[J]. 岩土工程学报,2019,41(1): 184-190.

    WANG Yin, ZHU Xingyun, YANG Qing. Installation of suction caissons and formation of soil plug considering variation of permeability of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 184-190.
    [2] 霍知亮. 黏土地基中桶形基础模型试验及工作机理研究[D]. 天津:天津大学,2015.
    [3] 王胤,杨涵,庞子毅,等. 基于CFD-DEM流固耦合方法的吸力锚基础负压沉贯数值模拟[J]. 岩土工程学报,2023,45(2): 384-393,444. doi: 10.11779/CJGE20211512

    WANG Yin, YANG Han, PANG Ziyi, et al. Numerical simulation of negative pressure penetration of suction anchor foundation based on CFD-DEM fluid solid coupling method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 384-393,444. doi: 10.11779/CJGE20211512
    [4] 闫宏生,苑恒,李怀亮,等. 大抓力锚和吸力锚在CALM型单点系泊系统中的应用[J]. 中国海洋平台,2022,37(4): 31-36,42.

    YAN Hongsheng, YUAN Heng, LI Huailiang, et al. Application of fluke anchor and suction anchor in CALM single-point mooring system[J]. China Offshore Platform, 2022, 37(4): 31-36,42.
    [5] RICE S O. Mathematical analysis of random noise[J]. The Bell System Technical Journal, 1944, 23(3): 282-332. doi: 10.1002/j.1538-7305.1944.tb00874.x
    [6] CRANDALL S H, CHANDIRAMANI K L, COOK R G. Some first-passage problems in random vibration[J]. Journal of Applied Mechanics, 1966, 33(3): 532-538. doi: 10.1115/1.3625118
    [7] ANDRIEU-RENAUD C, SUDRET B, LEMAIRE M. The PHI2 method: a way to compute time-variant reliability[J]. Reliability Engineering & System Safety, 2004, 84(1): 75-86.
    [8] SINGH A, MOURELATOS Z P. On the time-dependent reliability of non-monotonic, non-repairable systems[J]. SAE International Journal of Materials and Manufacturing, 2010, 3(1): 425-444. doi: 10.4271/2010-01-0696
    [9] HU Z, DU X P. A sampling approach to extreme value distribution for time-dependent reliability analysis[J]. Journal of Mechanical Design, 2013, 135(7): 071003.1-071003.8.
    [10] HU Z, DU X P. Time-dependent reliability analysis with joint upcrossing rates[J]. Structural and Multidisciplinary Optimization, 2013, 48(5): 893-907. doi: 10.1007/s00158-013-0937-2
    [11] JIANG C, HUANG X P, HAN X, et al. A time-variant reliability analysis method based on stochastic process discretization[J]. Journal of Mechanical Design, 2014, 136(9): 091009.1-091009.11.
    [12] LI C Y, ZHANG Y M. Time-variant reliability assessment and its sensitivity analysis of cutting tool under invariant machining condition based on gamma process[J]. Mathematical Problems in Engineering, 2012, 2012: 676923.1-676923.19.
    [13] CAZUGUEL M, RENAUD C, COGNARD J Y. Time-variant reliability of nonlinear structures: application to a representative part of a plate floor[J]. Quality and Reliability Engineering International, 2006, 22(1): 101-118. doi: 10.1002/qre.750
    [14] KOPUSTINSKAS V, AUGUTIS J, RIMKEVIČIUS S. Dynamic reliability and risk assessment of the accident localization system of the Ignalina NPP RBMK-1500 reactor[J]. Reliability Engineering & System Safety, 2005, 87(1): 77-87.
    [15] 张德权,韩旭,姜潮,等. 时变可靠性的区间PHI2分析方法[J]. 中国科学:物理学 力学 天文学,2015,45(5): 41-53.

    Zhang D Q, Han X, Jiang C, et al. The interval PHI2 analysis method for time-dependent reliability. Sci Sin-Phys Mech Astron, 2015, 45(5): 41-53.
    [16] TIAN L, NOORE A. Dynamic software reliability prediction: an approach based on support vector machines[J]. International Journal of Reliability, Quality and Safety Engineering, 2005, 12: 309-321. doi: 10.1142/S0218539305001847
    [17] BECKER G, CAMARINOPOULOS L, KABRANIS D. Dynamic reliability under random shocks[J]. Reliability Engineering & System Safety, 2002, 77(3): 239-251.
    [18] STREICHER H, RACKWITZ R. Time-variant reliability-oriented structural optimization and a renewal model for life-cycle costing[J]. Probabilistic Engineering Mechanics, 2004, 19(1/2): 171-183.
    [19] SUDRET B. Analytical derivation of the outcrossing rate in time-variant reliability problems[J]. Structure and Infrastructure Engineering, 2008, 4(5): 353-362. doi: 10.1080/15732470701270058
    [20] 茆诗松,王静龙,濮晓龙. 高等数理统计[M]. 2版. 北京:高等教育出版社,2006:34-35.
    [21] 钟泽棋. 基于FMECA的吸力锚系统可靠性评估[D]. 成都:电子科技大学,2023.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  75
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-22
  • 修回日期:  2024-01-05
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回