• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

相邻直线电机边端效应及电磁力特性分析

张敏 骆淑娟 曹毅 罗世辉

张敏, 骆淑娟, 曹毅, 罗世辉. 相邻直线电机边端效应及电磁力特性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240250
引用本文: 张敏, 骆淑娟, 曹毅, 罗世辉. 相邻直线电机边端效应及电磁力特性分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240250
Zhang Min, Luo Shujuan, Cao Yi, Luo Shihui. End Effect and Electromagnetic Force Characteristics of Two Adjacent Linear Induction Motors[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240250
Citation: Zhang Min, Luo Shujuan, Cao Yi, Luo Shihui. End Effect and Electromagnetic Force Characteristics of Two Adjacent Linear Induction Motors[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240250

相邻直线电机边端效应及电磁力特性分析

doi: 10.3969/j.issn.0258-2724.20240250
基金项目: 国家自然科学基金项目(No.52102442)
详细信息
    作者简介:

    张敏(1987—),女,助理研究员,博士,研究方向为磁浮列车系统动力学、直线电机理论及应用,E-mail:zm@swjtu.edu.cn

End Effect and Electromagnetic Force Characteristics of Two Adjacent Linear Induction Motors

  • 摘要:

    直线感应电机在中低速磁浮列车应用中两两相邻,磁场相互干涉. 为探究磁场干涉对相邻电机电磁力特性的影响,首先,基于麦克斯韦方程组建立相邻电机各区域矢量磁位方程,利用边界条件对各区域矢量磁位进行求解;然后,推导得到相邻电机气隙磁场、牵引力和法向力表达式,分析相邻电机磁场干涉对电机电磁力的影响,并利用有限元仿真对理论模型进行检验;最后,研究电机间距和滑差频率对相邻电机电磁力的影响. 研究结果表明:2台电机边端效应引起的行波相互影响,前一台电机(LIM1)受后一台电机(LIM2)影响较小,而LIM2则受LIM1影响较大;LIM2牵引力和法向力均随间距的变化产生波动,间距越小,滑差频率也越小,波动幅度越大,LIM2电磁力受间距影响波动幅度越大;当滑差频率为8 Hz、速度为160 km/h、电流为400 A时,LIM2牵引力相较LIM1最大可增加83%;LIM2法向力最大可减小6.6 kN,将大大减轻悬浮系统的负担. 研究结果可为直线电机在中低速磁浮列车中的应用提供理论指导和技术支撑.

     

  • 图 1  中低速磁浮列车与直线电机

    Figure 1.  Medium and low speed maglev train and its linear motor

    图 2  二维场理论模型

    Figure 2.  Two-dimensional theoretical model

    图 3  仿真模型及云图

    Figure 3.  Simulation model and cloud diagram: (a) positions of motors at different time; (b) magnetic density and magnetic field lines for adjacent positions

    图 4  牵引力-间距曲线

    Figure 4.  Traction force–spacing curves

    图 5  不同滑差频率下电机牵引力-间距曲线

    Figure 5.  Traction force–spacing curves under different slip frequencies

    图 6  不同滑差频率下电机法向力-间距曲线

    Figure 6.  Normal force–spacing curves under different slip frequencies

    图 7  不同间距条件下的电机纵向气隙磁密

    Figure 7.  Magnetic flux density of longitudinal air gap under different spacings

    图 8  间距为0.6和1.5倍极距时电机的垂向气隙磁场

    Figure 8.  Vertical air gap magnetic field at a spacing of 0.6 and 1.5 times pole pitch

    图 9  间距为1.2和2.1倍极距时电机的垂向气隙磁场

    Figure 9.  Vertical air gap magnetic field at a spacing of 1.2 and 2.1 times pole pitch

    表  1  电机参数

    Table  1.   Motor parameter

    名称 大小 名称 大小
    电机长度/mm 2850 电机容量/(kV•A) 250
    电机宽度/mm 220 额定相电压/V 212
    极数/极 12 额定相电流/A 400
    极距/mm 220 气隙/mm 10
    相数 3 滑差频率/Hz 12
    每极每相槽数 3 单相有效串联匝数/匝 72
    次级板电阻率/
    (Ω•m)
    2.83×10−8 次级板厚/mm 4
    下载: 导出CSV
  • [1] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [2] 马卫华,胡俊雄,李铁,等. EMS型中低速磁浮列车悬浮架技术研究综述[J]. 西南交通大学学报,2023,58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971

    MA Weihua, HU Junxiong, LI Tie, et al. Summary of suspension frame technology of EMS medium and low speed maglev train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971
    [3] 吴会超,罗建利,周文,等. 中低速磁浮车岔耦合振动研究[J]. 西南交通大学学报,2022,57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829

    WU Huichao, LUO Jianli, ZHOU Wen, et al. Coupled vibration between low-medium speed maglev vehicle and turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
    [4] FRITZ E, WITT M. Maglev train development-history and today’s marketing chances[J]. Elektrische Bahnen, 2012, 110(3): 102-111.
    [5] BOLDEA I, TUTELEA L N, XU W, et al. Linear electric machines, drives, and MAGLEVs: an overview[J]. IEEE Transactions on Industrial Electronics, 65(9): 7504-7515.
    [6] LV G, ZENG D H, ZHOU T, et al. Investigation of forces and secondary losses in linear induction motor with the solid and laminated back iron secondary for metro[J]. IEEE Transactions on Industrial Electronics, 64(6): 4382-4390.
    [7] 徐伟,孙广生. 单边直线感应电机纵向边缘效应的研究[J]. 中国工程科学,2007,9(3): 21-27. doi: 10.3969/j.issn.1009-1742.2007.03.004

    XU Wei, SUN Guangsheng. Research on the longitudinal end effect of single linear induction motor[J]. Engineering Science, 2007, 9(3): 21-27. doi: 10.3969/j.issn.1009-1742.2007.03.004
    [8] MISHIMA T, HIRAOKA M, NOMURA T. A study of the optimum stator winding arrangement of LIM in maglev systems[C]//IEEE International Conference on Electric Machines and Drives, 2005. San Antonio, TX, USA. IEEE, 2005: 1238-1242.
    [9] ZHAN J W, LU Q F. Design optimization and performance investigation of novel linear induction motors with V-shaped ladder-slit secondary[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 58(2): 157-174. doi: 10.3233/JAE-180036
    [10] LV G, ZHOU T, ZENG D H, et al. Design of ladder-slit secondaries and performance improvement of linear induction motors for urban rail transit[J]. IEEE Transactions on Industrial Electronics, 65(2): 1187-1195.
    [11] LU Q F, LI L X, ZHAN J W, et al. Design optimization and performance investigation of novel linear induction motors with two kinds of secondaries[J]. IEEE Transactions on Industry Applications, 55(6): 5830-5842.
    [12] 邓江明,陈特放,唐建湘,等. 单边直线感应电机动态最大推力输出的滑差频率优化控制[J]. 中国电机工程学报,2013,33(12): 123-130,194.

    DENG Jiangming,CHEN Tefang,TANG Jianxiang,et al. Optimum slip frequency control of maglev single-sided linear induction motors to maximum dynamic thrust[J]. Proceedings of the CSEE,2013,33(12): 123-130,194.
    [13] 张敏,范屹立,马卫华,等. 滑差频率对磁浮车辆运行性能的影响[J]. 交通运输工程学报,2019,19(5): 64-73. doi: 10.3969/j.issn.1671-1637.2019.05.008

    ZHANG Min, FAN Yili, MA Weihua, et al. Influence of slip frequency on running performance of maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 64-73. doi: 10.3969/j.issn.1671-1637.2019.05.008
    [14] SEO H, LIM J, CHOE G H, et al. Algorithm of linear induction motor control for low normal force of magnetic levitation train propulsion system[J]. IEEE Transactions on Magnetics, 54(11): 1-4.
    [15] WANG K, LI Y H, GE Q X, et al. An improved indirect field-oriented control scheme for linear induction motor traction drives[J]. IEEE Transactions on Industrial Electronics, 65(12): 9928-9937.
    [16] HAN Y, NIE Z L, XU J, et al. Control strategy for optimising the thrust of a high-speed six-phase linear induction motor[J]. IET Power Electronics, 2020, 13(11): 2260-2268. doi: 10.1049/iet-pel.2019.1334
    [17] XIAO X Y, XU W, TANG Y R, et al. Improved loss minimization control based on time-harmonic equivalent circuit for linear induction motors adopted to linear metro[J]. IEEE Transactions on Vehicular Technology, 72(7): 8601-8612.
    [18] HU D, XU W, DIAN R J, et al. Loss minimization control of linear induction motor drive for linear metros[J]. IEEE Transactions on Industrial Electronics, 65(9): 6870-6880.
    [19] ELMORSHEDY M F, XU W, ALLAM S M, et al. MTPA-based finite-set model predictive control without weighting factors for linear induction machine[J]. IEEE Transactions on Industrial Electronics, 68(3): 2034-2047.
    [20] SUN X F, XU J, ZHU J J, et al. Thrust ripple suppression based on negative current control for short-primary low-speed large LIM under transient operation[J]. IEEE Transactions on Energy Conversion, 38(3): 1566-1575.
    [21] Zhang M, Luo SH, Gao C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. doi: 10.1080/00423114.2018.1435892
    [22] ZHANG M, HAN Y P, MA W H, et al. Optimal selection of the linear induction motor spacing for the medium-low speed maglev vehicle[J]. International Journal of Rail Transportation, 2021, 9(2): 157-185. doi: 10.1080/23248378.2020.1742209
    [23] 张敏,罗世辉,马卫华. 接线相位差对直线电机牵引性能的影响[J]. 中国科学(技术科学),2019,49(8): 971-980. doi: 10.1360/N092018-00443

    ZHANG Min, LUO Shihui, MA Weihua. Influence of connection phase difference on the traction performance of linear induction motor[J]. Scientia Sinica (Technologica), 2019, 49(8): 971-980. doi: 10.1360/N092018-00443
    [24] ZHANG M, LUO S H, GAO C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. doi: 10.1080/00423114.2018.1435892
    [25] ZHANG M, HAN Y P, MA W H, et al. Optimal selection of the linear induction motor spacing for the medium-low speed maglev vehicle[J]. International Journal of Rail Transportation, 2021, 9(2): 157-185. doi: 10.1080/23248378.2020.1742209
    [26] 龙遐令. 直线感应电动机的理论和电磁设计方法[M]. 北京:科学出版社,2006.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 修回日期:  2024-12-23
  • 网络出版日期:  2025-05-19

目录

    /

    返回文章
    返回