Iterative Optimization Design for Dynamic Performance Parameters of High-Speed Trains
-
摘要:
针对高速列车动力学性能参数优化求解问题,首先,搭建高速列车动力学性能优化迭代设计框架,提取动力学属性设计参数并建立动力学性能分析模型;其次,基于设计参数重要度分析和自组织映射缩减设计空间维度,通过多学科领域耦合仿真计算生成性能参数试验样本集;最后,构建多工况下的多目标优化模型,并在此基础上建立基于贝叶斯优化随机森林的高速列车多工况代理模型,通过改进NSGA-Ⅱ算法找出满意的设计参数集. 以某工况为例,实验结果表明:优化后的横向平稳性、垂向平稳性、轮轨垂向力、轮轴横向力、脱轨系数、轮重减载率和倾覆系数性能分别提升1.14%、3.19%、2.86%、2.30%、8.33%、2.77%、8.11%,验证了所提迭代设计方法有效可行,对复杂装备正向创新设计具有一定参考价值.
Abstract:To optimize the dynamic performance parameters of high-speed trains, an iterative design framework for dynamic performance optimization of high-speed trains was established. First, dynamic design parameters were extracted, and a dynamic performance analysis model was constructed. Next, the design space was reduced through importance analysis of the design parameters combined with self-organizing mapping, and an experimental dataset of performance parameters was generated through multidisciplinary coupled simulation. Finally, a multi-objective optimization model was established under multiple working conditions. Based on Bayesian optimization and random forest, a surrogate model for multiple working conditions was developed. An improved non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) was employed to identify a set of optimal design parameters. Following optimization, the experiment conducted under a representative working condition demonstrates performance improvements of 1.14%, 3.19%, 2.86%, 2.30%, 8.33%, 2.77%, and 8.11% in lateral ride comfort, vertical ride comfort, vertical wheel-rail force, lateral wheelset force, derailment coefficient, wheel load reduction ratio, and overturning coefficient, respectively. These findings validate the feasibility and effectiveness of the proposed iterative design method, providing references for the forward innovative design of complex equipment.
-
表 1 高速列车典型服役工况设计列表
Table 1. Typical service conditions designed for high-speed train
工况 运行速度/
(km•h−1)曲线半径/
m超高/
mm轨道不平顺 工况 1 300 ∞ 京津谱 工况 2 250 5000 80 秦沈谱 工况 3 300 7000 100 京津谱 工况 4 350 9000 140 武广谱 表 2 高速列车设计空间缩减结果表
Table 2. Results of design space reduction of high-speed train
序号 参数符号 参数名称 初始取值范围 缩减后的范围 1 $ {x_1} $ 车轮直径/mm 790~920 795~870 2 $ {x_2} $ 轮对质量/kg 1200 ~2200 1800 ~2160 3 $ {x_3} $ 轮对侧滚转动惯量/(kg•m2) 500~750 535~712 4 $ {x_4} $ 轮对摇头转动惯量/(kg•m2) 500~800 522~764 5 $ {x_5} $ 一系弹簧纵向刚度/(kN•m−1) 800~ 1150 860~ 1080 6 $ {x_6} $ 一系弹簧垂向刚度/(kN•m−1) 900~ 1300 950~ 1230 7 $ {x_7} $ 一系垂向阻尼/(kN•s•m−1) 10~30 11.3~25.5 8 $ {x_8} $ 轴箱转臂节点纵向刚度/(MN•m−1) 5~15 6.5~14.2 9 $ {x_9} $ 轴箱转臂节点横向刚度/(MN•m−1) 4~10 4.2~9.5 10 $ {x_{10}} $ 抗蛇行减振器横向跨距/mm 2400 ~2800 2450 ~2750 11 $ {x_{11}} $ 空气弹簧垂向刚度/(kN•m−1) 120~450 150~350 12 $ {x_{12}} $ 空气弹簧横向刚度/(kN•m−1) 150~400 160~350 13 $ {x_{13}} $ 二系横向减振器节点刚度/(MN•m−1) 10~50 12.0~45.6 14 $ {x_{14}} $ 二系横向阻尼/(kN•s•m−1) 30~65 34~60 15 $ {x_{15}} $ 抗蛇行减振器节点刚度/(MN•m−1) 5~13 7.2~12.5 16 $ {x_{16}} $ 抗蛇行减振器阻尼(取非线性曲线的三点平均值)/(kN•s•m−1) 50~ 3500 75~ 3200 表 3 优化后的随机森林模型的超参数值
Table 3. Hyperparametric values of optimized random forest model
工况 树的棵
数/棵拆分内部节点最小样本数/个 叶子节点最小样本数/个 最大深度 1 127 2 11 9 2 132 3 15 9 3 326 2 10 9 4 271 4 7 12 表 4 各工况贝叶斯优化超参数的随机森林代理模型综合平均值
Table 4. Comprehensive average values of random surrogate forest model hyperparameters optimized by Bayesian method under each working condition
参数 MAE MSE R2 工况 1 0.2324 0.3527 0.9981 工况 2 0.2864 0.4292 0.9968 工况 3 0.3533 0.3976 0.9945 工况 4 0.3924 0.4935 0.9883 表 5 4种工况性能优化对比
Table 5. Comparison of performance optimization under four working conditions
工况 优化情形 横向平稳性 垂向平稳性 轮轨垂向力/kN 轮轴横向力/kN 脱轨系数 轮重减载率 倾覆系数 1 优化前 1.76 1.88 77.56 6.52 0.12 0.36 0.37 优化后 1.74 1.82 75.34 6.37 0.11 0.35 0.34 2 优化前 1.95 1.98 83.46 12.65 0.23 0.41 0.40 优化后 1.93 1.95 81.82 11.45 0.21 0.4 0.38 3 优化前 1.83 1.86 79.67 10.53 0.18 0.38 0.38 优化后 1.80 1.82 77.72 9.83 0.17 0.37 0.36 4 优化前 1.79 1.92 78.82 7.75 0.15 0.37 0.38 优化后 1.75 1.90 77.94 7.23 0.14 0.36 0.36 -
[1] 石怀龙,罗仁,曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报,2021,21(1): 36-58.SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58. [2] 安东,邹益胜,赵春发,等. 高速磁浮列车动力学性能参数多目标优化方法研究[J]. 机械科学与技术,2022,41(3): 466-472.AN Dong, ZOU Yishen, ZHAO Chun Fa, et al. Study on multi-objective optimization method of dynamic performance parameters of high-speed maglev train[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 466-472. [3] 姚远,陈相旺,李广,等. 高速列车抗蛇行减振器参数的多目标优化研究[J]. 西南交通大学学报,2021,56(6): 1298-1304.YAO Yuan, CHEN Xiangwang, LI Guang, et al. Multi-objective optimization of yaw damper parameters for high-speed train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304. [4] CHEN X W, YAO Y, SHEN L J, et al. Multi-objective optimization of high-speed train suspension parameters for improving hunting stability[J]. International Journal of Rail Transportation, 2022, 10(2): 159-176. doi: 10.1080/23248378.2021.1904444 [5] ZHU Y, LYU Y, OLOFSSON U. Mapping the friction between railway wheels and rails focusing on environmental conditions[J]. Wear, 2015, 324/325: 122-128. doi: 10.1016/j.wear.2014.12.028 [6] 宫金良,胡光学,张彦斐. 以刚度为目标的微位移放大模块闭环设计方法[J]. 机械工程学报,2012,48(15): 58-64.GONG Jinliang, HU Guangxue, ZHANG Yanfei. Closed loop design method of micro-driving displacement amplifier module targeting for stiffness[J]. Journal of Mechanical Engineering, 2012, 48(15): 58-64. [7] 罗钜,郭福永. 民用涡扇发动机总体多学科设计优化研究[J]. 中国机械工程,2019,30(15): 1813-1820. doi: 10.3969/j.issn.1004-132X.2019.15.007LUO Ju, GUO Fuyong. Study on multi-disciplinary design optimization on civil turbofan engines[J]. China Mechanical Engineering, 2019, 30(15): 1813-1820. doi: 10.3969/j.issn.1004-132X.2019.15.007 [8] ZHANG W H, SHEN Z Y, ZENG J. Study on dynamics of coupled systems in high-speed trains[J]. Vehicle System Dynamics, 2013, 51(7): 966-1016. doi: 10.1080/00423114.2013.798421 [9] ANGELO G, MARZOLLA M. New trends in parallel and distributed simulation: From many-cores to Cloud Computing[J]. Simulation Modelling Practice and Theory, 2014, 49: 320-335. doi: 10.1016/j.simpat.2014.06.007 [10] 姚远,李广,梁树林,等. 基于健壮稳定性的高速列车悬挂参数优化匹配方法[J]. 铁道学报,2021,43(8): 35-44. doi: 10.3969/j.issn.1001-8360.2021.08.005YAO Yuan, LI Guang, LIANG Shulin, et al. Optimal matching method for suspension parameters of high-speed train bogie based on robust hunting stability[J]. Journal of the China Railway Society, 2021, 43(8): 35-44. doi: 10.3969/j.issn.1001-8360.2021.08.005 [11] 姚远,任铖铭,陈相旺,等. 基于频域平稳性的高速机车悬挂参数优化匹配[J]. 西南交通大学学报,2022,57(6): 1259-1267.YAO Yuan, REN Chengming, CHEN Xiangwang, et al. Suspension parameters optimum matching of high-speed locomotive based on frequency domain stationarity[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1259-1267. [12] YAO Y, CHEN X W, LI H, et al. Suspension parameters design for robust and adaptive lateral stability of high-speed train[J]. Vehicle System Dynamics, 2023, 61(4): 943-967. doi: 10.1080/00423114.2022.2062012 [13] 于日伟,周长城,赵雷雷. 高速列车转向架-车体-座椅垂向耦合振动机理及悬挂参数联合优化[J]. 机械工程学报,2018,54(8): 57-67. doi: 10.3901/JME.2018.08.057YU Riwei, ZHOU Changcheng, ZHAO Leilei. Vertical coupled vibration mechanism of bogie-body-seat system and joint optimization of suspension parameters for high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(8): 57-67. doi: 10.3901/JME.2018.08.057 [14] 解欢,杨岳,童林军,等. 基于混合代理模型的高速轨道车辆悬挂参数多目标优化[J]. 铁道科学与工程学报,2016,13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025XIE Huan, YANG Yue, TONG Linjun, et al. Multi-objective optimization of the suspension parameters for high speed rail vehicle based ona hybrid surrogate model[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025 [15] 姜杰,杨旭锋,丁国富. 基于多峰优化Kriging模型与距离相关系数的高速列车动力学参数多输出灵敏度分析[J]. 工程科学与技术,2024,56(4): 250-260.JIANG Jie, YANG Xufeng, DING Guofu. Sensitivity analysis for dynamic parameters of high-speed train based on multimodal-optimization improved Kriging model and distance correlation[J]. Advanced Engineering Sciences, 2024, 56(4): 250-260. [16] 许平,杨丽婷,姚曙光,等. 城轨列车方锥式防爬吸能结构碰撞力学参数设计及多目标优化[J]. 中南大学学报(自然科学版),2022,53(5):1689-1699.XU Ping,YANG Liting,YAO Shuguang,et al. Collision mechanics parameter design and multi-objective optimization of square cone anti-climbing energy-absorbing structure for urban rail trains[J]. Journal of Central South University (Science and Technology), 2022, 53(5):1689-1699. [17] 张剑. 基于代理模型技术的高速列车性能参数设计及优化[D]. 成都:西南交通大学,2015. [18] 何庆,利璐,李晨钟,等. 基于Kriging模型的在役高速列车悬挂参数近似贝叶斯估计[J]. 机械工程学报,2023,59(12): 139-148. doi: 10.3901/JME.2023.12.139HE Qing, LI Lu, LI Chenzhong et al. Approximate bayesian estimation of suspension parameters of in-service high-speed trains based on Kriging surrogate model[J]. Journal of Mechanical Engineering, 2023, 59(12): 139-148. doi: 10.3901/JME.2023.12.139 [19] 肖乾,罗超,欧阳志许,等. 基于RBF神经网络代理模型的车辆/轨道参数多目标优化[J]. 机械强度,2021,43(2): 319-326.XIAO Qian, LUO Chao, OUYANG Zhixu, et al. Multi-objective optimization of vehicle/track parameters based on RBF neural network surrogate model[J]. Journal of Mechanical Strength, 2021, 43(2): 319-326. [20] 饶坝,马术文,张海柱,等. 高速列车转向架动力学设计指标分解冲突博弈协调方法[J]. 铁道科学与工程学报,2024,21(4): 1334-1344.RAO Ba, MA Shuwen, ZHANG Haizhu, et al. Game coordination method for decomposition conflict of dynamic design indicators of high-speed train bogie[J]. Journal of Railway Science and Engineering, 2024, 21(4): 1334-1344. [21] JOHNSSON A, BERBYUK V, ENELUND M. Pareto optimization of railway bogie suspension damping to enhance safety and comfort[J]. Vehicle System Dynamics, 2012, 50(9):1379-1407. [22] 成棣,孙琛,胡晓依,等. 面向低锥度晃车的CRH3平台动车组车轮型面优化[J]. 中国铁道科学,2020,41(6): 135-144. doi: 10.3969/j.issn.1001-4632.2020.06.15CHENG Di, SUN Chen, HU Xiaoyi, et al. Wheel profile optimization of CRH3 EMU oriented to carbody shaking caused by low equivalent conicity[J]. China Railway Science, 2020, 41(6): 135-144. doi: 10.3969/j.issn.1001-4632.2020.06.15 [23] ZOU Y S, DING G F, ZHANG W H, et al. Collaborative simulation method with spatiotemporal synchronization process control[J]. Chinese Journal of Mechanical Engineering, 2016, 29 (6): 1074-1082. [24] 王伟. 轨道不平顺对地铁车辆动力学性能的影响分析[D]. 成都:西南交通大学,2014. [25] LIAW A, WIENER M. Classification and regression by random Forest[J]. R news, 2002, 2(3): 8-22. -