• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

沥青混合料高温性能转变特征及抗车辙指标构建

李倩 王旭东 周兴业 陈盟 刘旭

李倩, 王旭东, 周兴业, 陈盟, 刘旭. 沥青混合料高温性能转变特征及抗车辙指标构建[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240516
引用本文: 李倩, 王旭东, 周兴业, 陈盟, 刘旭. 沥青混合料高温性能转变特征及抗车辙指标构建[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240516
LI Qian, WANG Xudong, ZHOU Xingye, CHEN Meng, LIU Xu. Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240516
Citation: LI Qian, WANG Xudong, ZHOU Xingye, CHEN Meng, LIU Xu. Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240516

沥青混合料高温性能转变特征及抗车辙指标构建

doi: 10.3969/j.issn.0258-2724.20240516
基金项目: 国家重点研发计划(2020YFA0714300).
详细信息
    作者简介:

    李倩(1988—),女,讲师,博士,研究方向为沥青路面力学及损伤行为,E-mail:lixiaoqian215@hbu.edu.cn

    通讯作者:

    王旭东(1968—),研究员,研究方向为从事沥青路面长期性能,E-mail: xd.wang@rioh.cn

  • 中图分类号: U416.217

Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures

  • 摘要:

    为揭示高温条件下沥青混合料的性能转变特征,提出相应的高温性能评价指标,对RIOHTrack足尺环道所用3种细粒式沥青混合料在不同温度、频率及应变条件下的动态模量和相位角进行测试,基于动态模量与相位角的关系,提出一个能反映沥青混合料高温性能转变的特征动态模量指标,并通过Bigaussian模型对动态模量-相位角曲线进行拟合,确定3种混合料特征动态模量的数值和性能下降速度,据此提出一个能同时反映特征动态模量、相位角和性能下降速度的抗车辙性能综合评价指标Eww,并通过足尺环道加载100000000次的路面车辙变形观测,验证该评价指标的可靠性. 结果表明:不同试验条件下得到的最大相位角对应的动态模量比较接近,提出的特征动态模量指标与车辙试验结果一致,说明特征动态模量指标能够反映混合料的抗车辙性能;采用Bigaussian模型拟合动态模量-相位角曲线的相关系数达到96%以上,该方法具有较高的可靠性;相比室内车辙试验,本文提出的抗车辙性能综合评价指标与足尺试验环道车辙检测结果一致,在抗车辙性能评价时考虑沥青混合料的高温性能转变特征是必要的.

     

  • 图 1  UTM动态模量试验

    Figure 1.  UTM dynamic modulus test

    图 2  SBS-AC13-65动态模量-频率(温度)曲线

    Figure 2.  Dynamic modulus–frequency (temperature) curve of SBS-AC13-65

    图 3  SBS-AC13-65相位角-频率(温度)曲线

    Figure 3.  Phase angle–frequency (temperature) curve of SBS-AC13-65

    图 4  高温条件下3种沥青混合料动态模量-频率曲线

    Figure 4.  Dynamic modulus–frequency curves of three asphalt mixtures under high temperature

    图 5  高温条件下3种混合料相位角-频率曲线

    Figure 5.  Phase angle–frequency curves of three asphalt mixtures under high temperature

    图 6  30 με条件下混合料动态模量-相位角

    Figure 6.  Dynamic modulus–phase angle of mixtures at 30 με

    图 7  3种混合料在不同控制应变下的动态模量-相位角曲线

    Figure 7.  Dynamic modulus–phase angle curves of mixtures under different control strains

    图 8  Bigaussian曲线形式

    Figure 8.  Bigaussian curve

    图 9  不同控制应变条件下3种沥青混合料动态模量-相位角拟合曲线

    Figure 9.  Dynamic modulus–phase angle fitting curves of three asphalt mixtures under different control strains

    图 10  3种沥青混合料的拟合参数对比

    Figure 10.  Comparison of fitting parameters of three asphalt mixtures

    图 11  足尺环道结构形式及材料组成

    Figure 11.  Structure and material composition of full-scale track

    表  1  沥青混合料级配组成

    Table  1.   Gradation composition of asphalt mixtures

    沥青混合料类型各筛孔尺寸通过率 /%
    1613.29.54.752.361.180.60.30.150.075
    SBS-AC13-65100.098.060.634.825.417.713.49.98.87.1
    SBS-AC13-70100.097.958.130.321.215.312.09.48.57.0
    SBS-SMA13100.097.654.724.916.714.012.511.411.09.7
    下载: 导出CSV

    表  2  沥青混合料马歇尔击实试验结果

    Table  2.   Marshall compaction test results of asphalt mixtures

    沥青混合料类型 最佳油石比/% 毛体积密度 空隙率
    (VV)/%
    干密度 矿料间隙率
    (VMA)/%
    骨架间隙率
    (VCA)/%
    沥青饱和度
    (VFA)/%
    SBS-AC13-65 5.05 2.55 1.88 2.42 14.01 44.33 86.51
    SBS-AC13-70 5.16 2.52 3.17 2.39 15.37 41.28 79.36
    SBS-SMA13 5.52 2.47 4.52 2.33 17.26 38.41 73.43
    下载: 导出CSV

    表  3  沥青混合料路用性能

    Table  3.   Pavement performance of asphalt mixtures

    沥青混合料类型 水稳定性 60 ℃车辙试验
    动稳定度/(次·mm−1
    残留稳定度/% 冻融劈裂(TSR)/%
    SBS-AC13-65 95.30 53.50 7518
    SBS-AC13-70 106.90 53.30 6174
    SBS-SMA13 106.90 58.60 5063
    下载: 导出CSV

    表  4  Bigaussian模型参数拟合结果

    Table  4.   Parameter fitting results of Bigaussian model

    控制应变/με 沥青混合料类型 最大相位角$\varphi $max/(°) 特征动态模量Ec/MPa 参数W1 参数W2 拟合相关系数/%
    30 SBS-AC13-65 34.40 2486 0.82 0.60 98.40
    SBS-AC13-70 35.11 2158 1.00 0.63 98.28
    SBS-SMA13 34.79 1947 1.34 0.62 96.99
    60 SBS-AC13-65 34.06 2419 0.79 0.61 98.74
    SBS-AC13-70 34.46 2120 0.96 0.65 98.70
    SBS-SMA13 33.28 2041 1.54 0.62 98.22
    90 SBS-AC13-65 33.09 2427 0.81 0.62 98.45
    SBS-AC13-70 33.17 2173 0.98 0.66 98.77
    SBS-SMA13 31.74 2196 1.29 0.62 98.40
    120 SBS-AC13-65 32.45 2374 0.80 0.64 98.11
    SBS-AC13-70 31.89 2395 1.04 0.64 98.74
    SBS-SMA13 30.49 2447 1.22 0.59 98.31
    150 SBS-AC13-65 31.86 2477 0.79 0.63 97.85
    SBS-AC13-70 31.32 2567 1.06 0.63 98.64
    SBS-SMA13 30.01 2635 1.30 0.57 98.40
    平均值 SBS-AC13-65 33.17 2440 0.80 0.62 98.44
    SBS-AC13-70 33.19 2269 1.00 0.64 98.72
    SBS-SMA13 32.04 2240 1.33 0.60 98.28
    下载: 导出CSV

    表  5  3种抗车辙评价指标对比

    Table  5.   Comparison of three rutting resistance evaluation indices

    路面
    结构
    沥青混合
    料类型
    车辙试验动
    稳定度/mm
    足尺环道车
    辙深度/mm
    Eww
    STR1 SBS-AC13-65 7518 105 8.81
    STR5 SBS-AC13-70 6174 95 10.10
    STR17 SBS-SMA13 5063 85 12.22
    下载: 导出CSV
  • [1] COOLEY J L A, KANDHAL P S, BUCHANAN M S, et al. Loaded wheel testers in the United States: state of the practice [M]. Washington, D. C. : Transportation Research Board, 2000.
    [2] ZHANG J, ALVAREZ A E, LEE S I, et al. Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation[J]. Construction and Building Materials, 2013, 44: 391-398. doi: 10.1016/j.conbuildmat.2013.03.013
    [3] WALUBITA L F, FUENTES L, LEE S I, et al. Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT[J]. Construction and Building Materials, 2019, 215: 737-753. doi: 10.1016/j.conbuildmat.2019.04.250
    [4] VAMSIKRISHNA G, SINGH D. Exploring potential of Marshall-RT as simple performance test to evaluate rutting resistance of asphalt mixtures[J]. International Journal of Pavement Engineering, 2023, 24(1): 2265030.1-2265030.16
    [5] 张怀志,王迪,杨彦海. 沥青混合料高温性能评价指标区分度研究[J]. 建筑材料学报,2021,24(6): 1248-1254. doi: 10.3969/j.issn.1007-9629.2021.06.017

    ZHANG Huaizhi, WANG Di, YANG Yanhai. High temperature performance evaluation indices of asphalt mixtures[J]. Journal of Building Materials, 2021, 24(6): 1248-1254. doi: 10.3969/j.issn.1007-9629.2021.06.017
    [6] 李岳,刘文俊,蔡靖,等. 基于足尺试验的机场沥青道面轮辙发展与预测[J]. 西南交通大学学报,2023,58(6): 1378-1384. doi: 10.3969/j.issn.0258-2724.20210606

    LI Yue, LIU Wenjun, CAI Jing, et al. Development and prediction of ruts in airport asphalt pavement based on full-scale test[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1378-1384. doi: 10.3969/j.issn.0258-2724.20210606
    [7] 王端宜,黎侃,蔡旭. 基于集料接触特性的沥青混合料抗车辙性能评价[J]. 华南理工大学学报(自然科学版),2012,40(11): 121-126,154. doi: 10.3969/j.issn.1000-565X.2012.11.018

    WANG Duanyi, LI Kan, CAI Xu. Evaluation of rutting resistance of asphalt mixture based on aggregate contact characteristics[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(11): 121-126,154. doi: 10.3969/j.issn.1000-565X.2012.11.018
    [8] 刘斌清,吕大春,张争奇,等. 高黏改性沥青高温黏弹特性指标区分度分析[J]. 建筑材料学报,2020,23(3): 692-699.

    LIU Binqing, LU Dachun, ZHANG Zhengqi, et al. Differentiation analysis of viscoelastic properties of high-viscosity modified asphalt at high temperature[J]. Journal of Building Materials, 2020, 23(3): 692-699.
    [9] 孙立军,等. 沥青路面结构行为学[M]. 上海:同济大学出版社,2013.
    [10] BOARD T R. Simple performance tester for superpave mix design: first-article development and evaluation[M]. Washington, D. C. : Transportation Research Board, 2003.
    [11] APEAGYEI A K. Rutting as a function of dynamic modulus and gradation[J]. Journal of Materials in Civil Engineering, 2011, 23(9): 1302-1310. doi: 10.1061/(ASCE)MT.1943-5533.0000309
    [12] ZHANG Y, LUO X, ONIFADE I, et al. Mechanical evaluation of aggregate gradation to characterize load carrying capacity and rutting resistance of asphalt mixtures[J]. Construction and Building Materials, 2019, 205: 499-510. doi: 10.1016/j.conbuildmat.2019.01.218
    [13] 陈光伟,刘黎萍,苏凯,等. 基于沥青路面抗剪性能的车辙预估模型标定[J]. 西南交通大学学报,2013,48(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013

    CHEN Guangwei, LIU Liping, SU Kai, et al. Rutting model considering shear behavior of asphalt pavement[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013
    [14] 江训利,何必想,刘港归,等. 基于塑性活化能的沥青混合料抗车辙性能优化[J/OL]. 北京工业大学学报,2023:1-13. [2025-03-10]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=BJGD20230711009&dbname=CJFD&dbcode=CJFQ.

    JIANG Xunli, HE Bixiang, LIU Ganggui, et al. Optimization of rutting resistance of asphalt mixture based on plastic activation energy[J/OL]. China Industrial Economics, 2023: 1-13. [2025-03-10]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=BJGD20230711009&dbname=CJFD&dbcode=CJFQ.
    [15] 庄恢将,钟皓白,王嘉琪,等. SBS改性沥青及其混合料高温性能试验对比分析[J]. 公路工程,2023,48(1): 116-122.

    ZHUANG Huijiang, ZHONG Haobai, WANG Jiaqi, et al. The comparative analysis of high temperature performance test of SBS modified asphalt and its mixture[J]. Highway Engineering, 2023, 48(1): 116-122.
    [16] ANDERSON J, CHRISTENSEN D W. SHRP-A-369 binder characterization and evaluation[R]. Washington D C: National Research Council, 1994.
    [17] 谭忆秋,李晓琳,吴建涛,等. 温度及荷载频率对沥青-集料交互作用能力的影响[J]. 中国公路学报,2012,25(3): 65-72. doi: 10.3969/j.issn.1001-7372.2012.03.005

    TAN Yiqiu, LI Xiaolin, WU Jiantao, et al. Influence of temperature and loading frequency on the interaction ability of asphalt and aggregate[J]. China Journal of Highway and Transport, 2012, 25(3): 65-72. doi: 10.3969/j.issn.1001-7372.2012.03.005
    [18] 牛岩,张晨晨,王旭东,等. 沥青混合料玻璃态转变温度的外部影响因素[J]. 哈尔滨工业大学学报,2019,51(9): 137-143. doi: 10.11918/j.issn.0367-6234.201708124

    NIU Yan, ZHANG Chenchen, WANG Xudong, et al. External influence factors on the glass transition temperature of asphalt mixture[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 137-143. doi: 10.11918/j.issn.0367-6234.201708124
    [19] 谭忆秋. 沥青与沥青混合料[M]. 哈尔滨:哈尔滨工业大学出版社,2007.
    [20] YANG G, WANG X, ZHOU X, et al. Experimental study on the phase transition characteristics of asphalt mixture for stress absorbing membrane interlayer[J]. Materials, 2020, 13(2): 474.1-474.13.
    [21] 王筵铸. 沥青黏聚-黏附性和相态转变特性及其对混合料性能影响的研究[D]. 哈尔滨:哈尔滨工业大学,2022.
    [22] 王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技,2017,34(6): 30-37.

    WANG Xudong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37.
    [23] 梁明,王川,栾学昊,等. 聚合物改性沥青微细观相态结构的流变学响应特征[J]. 中国石油大学学报(自然科学版),2023,47(1): 183-188. doi: 10.3969/j.issn.1673-5005.2023.01.021

    LIANG Ming, WANG Chuan, LUAN Xuehao, et al. Rheological response characteristics of polymer modified asphalt microstructure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 183-188. doi: 10.3969/j.issn.1673-5005.2023.01.021
    [24] 杨挺青,徐平,罗文波,等. 黏弹性理论与应用[M]. 北京:科学出版社,2004.
    [25] 王旭东,张蕾. 宽刚度域基层长寿命沥青路面设计导论[M]. 北京:人民交通出版社,2024.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  56
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-12
  • 修回日期:  2025-03-10
  • 网络出版日期:  2025-05-20

目录

    /

    返回文章
    返回