• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超导电动悬浮非对称系统多目标优化设计

王津 葛琼璇 赵鲁

王津, 葛琼璇, 赵鲁. 超导电动悬浮非对称系统多目标优化设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240477
引用本文: 王津, 葛琼璇, 赵鲁. 超导电动悬浮非对称系统多目标优化设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240477
WANG Jin, GE Qiongxuan, ZHAO Lu. Multi-objective Optimization of Asymmetric Null-Flux Coils for Superconducting Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240477
Citation: WANG Jin, GE Qiongxuan, ZHAO Lu. Multi-objective Optimization of Asymmetric Null-Flux Coils for Superconducting Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240477

超导电动悬浮非对称系统多目标优化设计

doi: 10.3969/j.issn.0258-2724.20240477
基金项目: 国家重点研发计划(2023YFB4302501-02)
详细信息
    作者简介:

    王 津(1994—),女, 博士研究生,研究方向大功率电力电子与直线驱动,E-mail:wj2021syg@mail.iee.ac.cn

    通讯作者:

    葛琼璇(1967—),女,研究员,博士生导师,研究方向为高压大功率变流器控制技术、高性能电机牵引控制技术,E-mail: gqx@mail.iee.ac.cn

  • 中图分类号: xxx

Multi-objective Optimization of Asymmetric Null-Flux Coils for Superconducting Electrodynamic Suspension System

  • 摘要:

    为提高超导电动悬浮系统性能,基于全局灵敏度分析和多目标优化算法,提出一种非对称悬浮线圈优化设计方法. 首先,基于空间谐波法建立超导电动悬浮系统的数学模型,计算超导磁体的磁感应强度以及悬浮线圈的电磁力;其次,对此模型进行非对称优化设计,采用Sobol’敏感性分析方法,以悬浮力和每公里悬浮线圈质量为目标,计算各设计参数的灵敏度,并基于灵敏度分析结果进行非支配排序遗传算法Ⅱ(NSGA-Ⅱ)优化设计;最后,通过有限元进行仿真分析,验证空间谐波法解析模型,并对优化前后的模型进行比较. 研究结果表明:空间谐波法建立的悬浮系统模型与有限元模型具有一致性;相比优化前,优化后的非对称悬浮系统悬浮力提高8.3%,每公里铺设线圈质量降低12.9%;垂直位移0.02~0.04 m时,悬浮力由262.2 kN增加到270.2 kN,磁阻力由4.5 kN增加到5.4 kN;水平位移0.17~0.20 m时,悬浮力由306.5 kN减小到228.8 kN,磁阻力由6.2 kN减小为4.6k N;悬浮力、磁阻力的波动分别约为6%、65%. 研究揭示了悬浮力和磁阻力随着位移方向的变化规律,验证了非对称设计在提升悬浮力和轻量化方面的优势,为超导电动悬浮系统的优化设计提供理论参考.

     

  • 图 1  EDS系统截面

    Figure 1.  Cross-section of EDS.

    图 2  EDS单侧结构

    Figure 2.  Single-side EDS system structure diagram.

    图 3  超导线圈与8字线圈的几何关系和对应参数

    Figure 3.  Structure diagram and geometry parameters of the SCMs and NFCs

    图 4  不同采样规模下质量和悬浮力的灵敏度分析

    Figure 4.  Sensitivity of the levitation of different sampling size

    图 5  悬浮力、线圈电感与线圈截面宽度的关系

    Figure 5.  Relationships between the levitation force, inductance and cross-section width

    图 6  基于Sobol’的NSGA-Ⅱ流程

    Figure 6.  The Sobol’-based NSGA-II algorithm flow chart

    图 7  悬浮力与质量的Pareto前沿

    Figure 7.  Pareto front of levitation force to mass.

    图 8  空间谐波法与有限元模型对比

    Figure 8.  Comparison of space harmonic technique and finite element model.

    图 9  悬浮力优化前后对比

    Figure 9.  Comparison of the levitation force of the initial system and the optimal system.

    图 10  磁阻力优化前后对比

    Figure 10.  Comparison of the drag force of the initial system and the optimal system

    表  1  EDS系统关键参数

    Table  1.   Main parameters of EDS

    线圈 符号 描述 幅值
    8字线圈 a1 长度与极距比例 0.778
    b1u 上线圈高度占比 0.500
    b1b 下线圈高度占比 0.500
    b1 上下线圈总高度/m 0.680
    zu 上线圈中心高度/m 0.380
    zb 下线圈中心高度/m 0.380
    c1 线圈截面长度/m 0.060
    c2 线圈截面宽度/m 0.040
    Ng 线圈匝数 24
    Sg 截面线圈每匝面积/mm2 100
    τ1 极距/m 0.450
    g 上下线圈间隙/m 0.080
    r1 线圈圆角半径/m 0.115
    超导线圈 a0 长度与极距比例 0.793
    b0 高度/m 0.500
    d1 线圈截面长度/m 0.040
    超导线圈 d2 线圈截面宽度/m 0.070
    Ns 线圈匝数 1400
    Is 额定电流/A 500
    τ0 极距/m 1.350
    y1 8字线圈与超导线圈水平距离/m 0.185
    Δz 8字线圈与超导线圈中心垂直位移/m 0
    下载: 导出CSV

    表  2  设计参数及其变量范围

    Table  2.   Value range of design parameters

    参数 变量范围 参数 变量范围
    a1 [0.700,0.900] g/m [0.060,0.100]
    b1u [0.200,0.300] τ1/m [0.400,0.600]
    b1/m [0.200,0.800] a0 [0.700,0.800]
    r1/m [0.100,0.200] b0/m [0.200,0.600]
    n1/匝数 [2,12]
    下载: 导出CSV

    表  3  优化方案参数

    Table  3.   Indicator comparison of initial and optimization scheme

    参数 目标值 参数 目标值
    a1 0.580 τ1/m 0.600
    b1u 0.350 a0 0.800
    n1/匝 12 b0/m 0.500
    下载: 导出CSV
  • [1] NASIRI-ZARANDI R, HEKMATI A. A review of suspension and traction technologies in maglev trains[C]//2019 International Power System Conference (PSC). Tehran: IEEE, 2019: 129-135.
    [2] PHAENKONGNGAM T, CHINNAWONG K, PATUMASUIT N, et al. Reviewing propulsion & levitation system for magnetic levitation train[C]//2021 9th International Electrical Engineering Congress (iEECON). Pattaya: IEEE, 2021: 185-188.
    [3] 熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198.

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
    [4] 刘士苋,王磊,王路忠,等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报,2023,58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621

    LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic suspension trains and on-board superconducting magnets[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
    [5] 张榕欣,蔡小培,汤雪扬,王一. 超导电动磁浮道岔线形设计与侧向过岔速度优化研究[J/OL]. 西南交通大学学报,1-10[2024-11-29]. https://link.cnki.net/urlid/51.1277.u.20241129.1331.020.

    ZHANG Rongxin, CAI Xiaopeng, TANG Xueyang, et al. Linear design of superconducting electric magnetic levitation turnouts andoptimization of lateral speed over turnouts [J/OL]. Journal of southwest jiaotong university, 1-10[2024-11-29]. https://link.cnki.net/urlid/51.1277.u.20241129.1331.020.
    [6] 赵春发,李煜寒,彭也也,杨晶,宁晓芳,冯洋. 超导电动悬浮列车明线气动特性及其对悬浮状态的影响[J/OL]. 西南交通大学学报,1-10[2024-12-05]. https://link.cnki.net/urlid/51.1277.u.20241204.1756.013.

    ZHAO Chunfa, LI Yuhan, PENG Yeye, et al. Aerodynamic characteristics of the open air of superconducting maglev train and its influence on the levitation state[J/OL]. Journal of southwest jiaotong university, 1-10[2024-12-05]. https://link.cnki.net/urlid/51.1277.u.20241204.1756.013.
    [7] MURAI T, IWAMATSU M, YOSHIOKA H. Optimized design of 8-figure null-flux coils in EDS maglev[J]. IEEJ Transactions on Industry Applications, 2003, 123(1): 9-14. doi: 10.1541/ieejias.123.9
    [8] MURAI T, FUJIWARA S. Design of coil specifications in EDS maglev using optimization program[J]. IEEJ Transactions on Industry Applications, 1997, 117(7): 905-911. doi: 10.1541/ieejias.117.905
    [9] CHEN Y J, FENG J. Optimization of guideway coil dimensions for a magnetic levitation system[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4335-4344. doi: 10.1109/20.620443
    [10] CUI L B, LUO J, SU Z H, et al. Fast optimization of null-flux coils for superconducting electrodynamic suspension train with RSM and AMGA[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(5): 3602308.1-3602308.8.
    [11] 王志涛,蔡尧,龚天勇,等. 基于场–路–运动耦合模型的超导电动悬浮列车特性研究[J]. 中国电机工程学报,2019,39(4): 1162-1171.

    WANG Zhitao, CAI Yao, GONG Tianyong, et al. Characteristic studies of the superconducting electrodynamic suspension train with a field-circuit-motion coupled model[J]. Proceedings of the CSEE, 2019, 39(4): 1162-1171.
    [12] GONG X X, LU Q F, LI Y X. Multi-objective optimization for the levitation system of the electrodynamic suspension train with HTS magnets[C]//2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). Wuhan: IEEE, 2021: 1-6.
    [13] HUANG H, DENG Z G, LI H T, et al. Numerical simulation of dynamic electromagnetic characteristics of superconducting electrodynamic suspension (EDS) train[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 3601105.1-.3601105.5.
    [14] NING X F, ZHAO C F, YU Q S, et al. Suspension and guidance performance of a new superconducting EDS system using the 8-shaped ground coils with nonequal turns[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(4): 3601511.1-3601511.11.
    [15] 王小农,黄靖宇. 超导电动磁浮列车悬浮和导向特性[J]. 同济大学学报(自然科学版),2022,50(10): 1482-1489.

    WANG Xiaonong, HUANG Jingyu. Levitation and guidance characteristics of superconducting electrodynamic maglev train[J]. Journal of Tongji University (Natural Science), 2022, 50(10): 1482-1489.
    [16] YONEZU T, WATANABE K, SUZUKI E, et al. Study on electromagnetic force characteristics acting on levitation/guidance coils of a superconducting maglev vehicle system[J]. IEEE Transactions on Magnetics, 2017, 53(11): 8300605.1-8300605.5.
    [17] NONAKA S, HIROSAKI T, KAWAKAMI E. Analysis of characteristics of repulsive magnetic levitated train using a space harmonic technique[J]. Electrical Engineering in Japan, 1980, 100(5): 80-88. doi: 10.1002/eej.4391000512
    [18] RIBANI P L, URBANO N. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection[J]. IEEE Transactions on Magnetics, 2000, 36(1): 358-365. doi: 10.1109/20.822547
    [19] Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
    [20] 宋健,佘湖清,李超,等. 基于Sobol’灵敏度分析的火箭弹自力弹射多目标约束优化[J]. 推进技术,2022,43(12): 40-48.

    SONG Jian, SHE Huqing, LI Chao, et al. Multi-object constraint optimization of rocket self-ejection based on sobol’Sensitivity analysis[J]. Journal of Propulsion Technology, 2022, 43(12): 40-48.
    [21] 倪菲,范琳,徐俊起,林国斌,等. 基于Sobol′法的高速磁浮列车单点悬浮系统全局灵敏度分析[J/OL]. 西南交通大学学报,1-12[2025-02-07]. https://link.cnki.net/urlid/51.1277.U.20250227.1256.002.

    NI Fei, FAN Lin, XU Junqi, et al. Global sensitivity analysis of single electromagnet levitation system for high-speed maglev train based on the Sobol' method [J/OL]. Journal of southwest jiaotong university, 1-12[2025-02-07]. https://link.cnki.net/urlid/51.1277.U.20250227.1256.002.
    [22] 谭富星,李凯,于淼,等. 超导电动悬浮试验线悬浮系统设计及验证[J]. 机车电传动,2024(3): 13-18.

    TAN Fuxing, LI Kai, YU Miao, et al. Design and verification of levitation system for superconducting electrodynamic suspension test line[J]. Electric Drive for Locomotives, 2024(3): 13-18.
    [23] OHASHI S, UEDA N. Dependence of the quenched SC coil position on the transient motion of the superconducting magnetically levitated bogie[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 3600604.1-3600604.4.
    [24] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [25] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [26] 徐杰. 超导磁悬浮列车用直线发电机的设计与特性解析分析[D]. 北京:北京交通大学,2020.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2025-03-07
  • 网络出版日期:  2025-05-14

目录

    /

    返回文章
    返回