• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

繁忙终端区连续下降运行4D轨迹预测

王超 陈含露 秦宏坤 刘博

王超, 陈含露, 秦宏坤, 刘博. 繁忙终端区连续下降运行4D轨迹预测[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230380
引用本文: 王超, 陈含露, 秦宏坤, 刘博. 繁忙终端区连续下降运行4D轨迹预测[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230380
WANG Chao, CHEN Hanlu, QIN Hongkun, LIU Bo. 4D Trajectory Prediction of Continuous Descent Operation in Congested Terminal Control Area[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230380
Citation: WANG Chao, CHEN Hanlu, QIN Hongkun, LIU Bo. 4D Trajectory Prediction of Continuous Descent Operation in Congested Terminal Control Area[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230380

繁忙终端区连续下降运行4D轨迹预测

doi: 10.3969/j.issn.0258-2724.20230380
基金项目: 中央高校基本科研业务费专项资金(3122021065);天津市应用基础研究多元投入基金重点项目(21JCZDJC00780);天津市教委科研计划项目(2020KJ028)
详细信息
    作者简介:

    王超(1971—),男,教授,博士,研究方向为空中交通系统优化与控制,E-mail:wangch@cauc.edu.cn

  • 中图分类号: V355

4D Trajectory Prediction of Continuous Descent Operation in Congested Terminal Control Area

  • 摘要:

    为在繁忙终端区实施连续下降运行并估算其二氧化碳减排成效,提出一种基于数据驱动和最优控制理论相结合的连续下降运行4D轨迹预测方法. 首先,通过近邻传播轨迹聚类方法对典型进场水平路径进行识别;然后,以典型进场水平路径为依据,分别以最小时间和最小燃油为目标,建立垂直剖面连续下降运行多阶段最优控制模型,并提出一种基于遗传算法的最优控制模型求解新方法—连续下降运算遗传算法(genetic algorithm for continuous descent operations,GACDO);最后,利用终端区实际轨迹数据,开展典型进场水平路径识别和连续下降运行模式下的4D轨迹预测与减排收益比较实验. 结果表明:该方法能获得理想的连续下降运行4D轨迹;以最小时间为优化目标时,平均运行时间和二氧化碳排放分别减少26%和8%;以最小油耗为优化目标时,运行时间和二氧化碳排放分别减少17%和20%.

     

  • 图 1  CDO的飞行阶段

    Figure 1.  Flight phase of CDO

    图 2  基因编码规则

    Figure 2.  Gene coding rules

    图 3  连续下降运行4D轨迹的染色体编码

    Figure 3.  Chromosome encoding for CDO of 4D trajectory

    图 4  成都双流机场进场轨迹聚类结果

    Figure 4.  Arrival trajectories clustering result of Chengdu Shuangliu Airport

    图 5  适应度曲线

    Figure 5.  Fitness curve

    图 6  预测的4D轨迹下降剖面

    Figure 6.  Descent profile of predicted 4D trajectory

    图 7  飞行下滑角的比较

    Figure 7.  Comparison of flight gliding angles

    表  1  不同机型CDO预测飞行时间与燃油消耗对比

    Table  1.   Comparison of predicted flight time and fuel consumption for CDO of different aircraft types

    机型 预测方法 最小时间 最小燃油
    lTOD/km 燃油/kg CO2/kg 飞行时间/s lTOD/km 燃油/kg CO2/kg 飞行时间/s
    A319实际轨迹170.9538.3950170.9538.3950
    GA算法−100.0158.2498.3697−127.7127.3400.9810
    A320实际轨迹192.6606.7950192.6606.7950
    GA算法−107.4180.3567.9708−133.3161.4508.4815
    A321实际轨迹266.4839.1950266.4839.1950
    GA算法−100.0235.7724.4691−118.5226.6713.7772
    B737实际轨迹199.5628.4950199.5628.4950
    GA算法−101.8178.2561.3697−125.9153.2482.5808
    下载: 导出CSV
  • [1] SÁEZ R, PRATS X, POLISHCHUK T, et al. Traffic synchronization in terminal airspace to enable continuous descent operations in trombone sequencing and merging procedures: an implementation study for Frankfurt Airport[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102875.1-102875.23. doi: 10.1016/j.trc.2020.102875
    [2] ZENG W L, CHU X, XU Z F, et al. Aircraft 4D trajectory prediction in civil aviation: a review[J]. Aerospace, 2022, 9(2): 91.1-91.19. doi: 10.3390/aerospace9020091
    [3] 王超,郭九霞,沈志鹏. 基于基本飞行模型的4D航迹预测方法[J]. 西南交通大学学报,2009,44(2): 295-300. doi: 10.3969/j.issn.0258-2724.2009.02.028

    WANG Chao, GUO Jiuxia, SHEN Zhipeng. Prediction of 4D trajectory based on basic flight models[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 295-300. doi: 10.3969/j.issn.0258-2724.2009.02.028
    [4] 张军峰,蒋海行,武晓光,等. 基于BADA及航空器意图的四维航迹预测[J]. 西南交通大学学报,2014,49(3): 553-558. doi: 10.3969/j.issn.0258-2724.2014.03.028

    ZHANG Junfeng, JIANG Haixing, WU Xiaoguang, et al. 4 D trajectory prediction based on BADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 553-558. doi: 10.3969/j.issn.0258-2724.2014.03.028
    [5] 王莉莉,刘鑫宇. 基于自主改航的交叉航班流预先冲突解脱研究[J/OL]. 西南交通大学学报,1-9[2024-12-05]. http://kns.cnki.net/kcms/detail/51.1277.U.20240322.1643.006.html.

    WANG Lili, Liu xinyu, A study on pre-conflict resolution of cross-flight streams based on autonomous re-routing[J/OL] Journal of Southwest Jiaotong University, 1-9[2024-12-05]. http://kns.cnki.net/kcms/detail/51.1277.U.20240322.1643.006.html.
    [6] ZHANG J F, LIU J, HU R, et al. Online four dimensional trajectory prediction method based on aircraft intent updating[J]. Aerospace Science and Technology, 2018, 77: 774-787. doi: 10.1016/j.ast.2018.03.037
    [7] FRANCO A, RIVAS D, VALENZUELA A. Probabilistic aircraft trajectory prediction in cruise flight considering ensemble wind forecasts[J]. Aerospace Science and Technology, 2018, 82/83: 350-362. doi: 10.1016/j.ast.2018.09.020
    [8] DANCILA R I, BOTEZ R M. New atmospheric data model for constant altitude accelerated flight performance prediction calculations and flight trajectory optimization algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(4): 405-426. doi: 10.1177/0954410020945555
    [9] ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, 8: 151250-151266. doi: 10.1109/ACCESS.2020.3016289
    [10] WU X P, YANG H Y, CHEN H, et al. Long-term 4D trajectory prediction using generative adversarial networks[J]. Transportation Research Part C: Emerging Technologies, 2022, 136: 103554.1-103554.13. doi: 10.1016/j.trc.2022.103554
    [11] MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access, 2020, 8: 134668-134680. doi: 10.1109/ACCESS.2020.3010963
    [12] DHIEF I, WANG Z, LIANG M, et al. Predicting aircraft landing time in extended-TMA using machine learning methods[C]//Proceedings of the 9th International Conference for Research in Air Transportation (ICRAT). Florida: [s.n.], 2020: 23-26.
    [13] ROCHA MURCA M C, DE OLIVEIRA M. A data-driven probabilistic trajectory model for predicting and simulating terminal airspace operations[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). San Antonio: IEEE, 2020: 1-7.
    [14] PARK S G, CLARKE J P. Optimal control based vertical trajectory determination for continuous descent arrival procedures[J]. Journal of Aircraft, 2015, 52(5): 1469-1480. doi: 10.2514/1.C032967
    [15] MA L B, TIAN Y G, ZHANG Y, et al. Trajectory optimization of aircraft for a continuous descent continuous procedure[C]//2020 Chinese Automation Congress (CAC). Shanghai: IEEE, 2020: 2063-2067.
    [16] GONZÁLEZ-ARRIBAS D, SOLER M, SANJURJO-RIVO M. Robust aircraft trajectory planning under wind uncertainty using optimal control[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(3): 673-688.
    [17] ZENG W L, XU Z F, CAI Z P, et al. Aircraft trajectory clustering in terminal airspace based on deep autoencoder and Gaussian mixture model[J]. Aerospace, 2021, 8(9): 266.1-266.18. doi: 10.3390/aerospace8090266
    [18] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. doi: 10.1126/science.1136800
    [19] NUIC A. User manual for the base of aircraft data (BADA) revision 3.6[EB/OL]. (2004-10-14)[2023-05-05]. https://www.eurocontrol.int/publication/user-manual-base-aircraft-data-bada.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  25
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2023-11-29
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回