• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于API617的磁悬浮流体机械振动与稳定性评估

张越 徐园平 周瑾 周扬

张越, 徐园平, 周瑾, 周扬. 基于API617的磁悬浮流体机械振动与稳定性评估[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240340
引用本文: 张越, 徐园平, 周瑾, 周扬. 基于API617的磁悬浮流体机械振动与稳定性评估[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240340
ZHANG Yue, XU Yuanping, ZHOU Jin, ZHOU Yang. Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API617[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240340
Citation: ZHANG Yue, XU Yuanping, ZHOU Jin, ZHOU Yang. Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API617[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240340

基于API617的磁悬浮流体机械振动与稳定性评估

doi: 10.3969/j.issn.0258-2724.20240340
基金项目: 国家自然科学基金资助项目(52075239)
详细信息
    作者简介:

    张越(1995—),男,助理研究员,博士,研究方向为磁悬浮轴承与振动控制,E-mail:zhangyue08@nuaa.edu.cn

    通讯作者:

    徐园平(1989—),男,副教授,博士,研究方向为磁悬浮轴承与振动控制,E-mail:ypxu@nuaa.edu.cn

  • 中图分类号: TH39

Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API617

  • 摘要:

    为评估磁悬浮流体机械设计的合理性和运行的可靠性,应用API617标准对其振动和稳定性进行分析. 首先,对API617标准中关于磁悬浮流体机械的相关规范和要求进行介绍;然后,以一台磁悬浮风机为研究对象,基于API617标准开展转子动力学分析、闭环传递函数测试、振动分析、稳定性评估等工作. 结果表明:各项指标均满足API617标准要求,转子运行转速与临界转速之间的分离裕度为69.7%和53.8%,设计合理;磁悬浮转子系统建模准确,可用于预测转子的动力学行为;径向磁悬浮轴承系统灵敏度传递函数峰值均处于等级A范围内,轴向磁悬浮轴承处于等级B范围内,满足长期稳定运行要求;运行转速范围内转子振动小于10 μm,远小于振动极限要求.

     

  • 图 1  转子不平衡响应图

    Figure 1.  Unbalanced response of rotor

    图 2  磁悬浮轴承转子闭环系统框图

    Figure 2.  AMB-rotor closed-loop system

    图 3  磁悬浮风机试验系统

    Figure 3.  Magnetically suspended blower test system

    图 4  自由-自由状态下转子模态振型图

    Figure 4.  Rotor modal shapes at free-free state

    图 5  转子自由-自由坎贝尔图

    Figure 5.  Rotor free-free Campbell map

    图 6  磁悬浮转子无阻尼临界转速图

    Figure 6.  Undamped critical speed of magnetically suspended rotor

    图 7  磁悬浮转子不平衡响应

    Figure 7.  Unbalanced response of magnetically suspended rotor

    图 8  闭环传递函数理论计算与试验测试结果对比

    Figure 8.  Theoretical calculation and experimental results of closed-loop transfer function

    图 9  轴向磁悬浮轴承转子系统闭环传递函数测试结果

    Figure 9.  Test result of closed-loop transfer function for axial AMB-rotor system

    图 10  磁悬浮轴承转子系统灵敏度传递函数测试结果

    Figure 10.  Test results of sensitivity transfer function for AMB-rotor system

    图 11  磁悬浮风机转子升速振动响应瀑布图

    Figure 11.  Waterfall diagram of vibration response of magnetically suspended blower rotor during acceleration

    表  1  磁悬浮轴承转子系统振动等级(ISO14839-2)

    Table  1.   AMB-rotor system vibration level (ISO14839-2)

    等级 Ar/Cmin 描述
    A <0.3 新调试设备一般都处于此等级
    B [0.3, 0.4) 设备可长时间运行
    C [0.4, 0.5) 需要定期维护以保持稳定运行
    D ≥0.5 设备失稳的可能性较大
    下载: 导出CSV

    表  2  磁悬浮轴承转子系统灵敏度峰值等级(ISO14839-3)

    Table  2.   Peak sensitivity level of AMB-rotor system (ISO14839-3)

    等级 最大增益/dB 描述
    A <9.5 新调试设备一般都处于此等级
    B [9.5,12.0) 是可接受的、可长时间运行的
    C [12.0,14.0) 不满足长时间连续运行要求
    D ≥14.0 可能会导致设备的损坏
    下载: 导出CSV

    表  3  径向磁悬浮轴承和转子的主要参数

    Table  3.   Main parameters of radial AMB and rotor

    参数 数值
    保护间隙/mm 0.25
    偏置电流/A 2.5
    磁极面积/mm2 270
    线圈匝数/匝 80
    转子长度/mm 562
    轴颈轴径/mm 56
    下载: 导出CSV
  • [1] JASTRZEBSKI R P, LIUKKONEN O. Analysis of a segmented axial active magnetic bearing for multi-MW compressor applications[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5): 2799-2809. doi: 10.1109/TMECH.2023.3254812
    [2] 贺艳晖,甘杨俊杰,周亮. 主动磁悬浮轴承在余热发电机的应用研究[J]. 西南交通大学学报,2022,57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860

    HE Yanhui, GAN Yangjunjie, ZHOU Liang. Application of active magnetic bearing in waste heat generator[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 657-664. doi: 10.3969/j.issn.0258-2724.20210860
    [3] International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: Part 1: Vocabulary: ISO14839-1: 2018[S]. [S. l.]: International Organization for Standardization, 2018.
    [4] International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 2: evaluation of vibration: ISO14839-2: 2004[S]. [S. l.]: International Organization for Standardization, 2004.
    [5] International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 3: evaluation of stability margin: ISO14839-3: 2006[S]. International Organization for Standardization, 2006.
    [6] International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 4: technical guidelines: ISO14839-4: 2012[S]. [S. l.]: International Organization for Standardization, 2012.
    [7] International Organization for Standardization. Mechanical vibration—vibration of rotating machinery equipped with active magnetic bearings: part 5: touch-down bearings: ISO14839-5: 2022[S]. [S. l.]: International Organization for Standardization, 2022.
    [8] American Petroleum Institute. Axial and centrifugal compressors and expanders-compressors for petroleum, chemical and gas industry services: API 617 9th edition[S]. Washington D. C.: API Publishing Services, 2022.
    [9] 崔恒斌,周瑾,董继勇,等. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版),2018,52(4): 635-640,686.

    CUI Hengbin, ZHOU Jin, DONG Jiyong, et al. Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4): 635-640,686.
    [10] KHATRIA R, HAWKINS L. Applicability of API 617 8th ed. and ISO 14839-3 in evaluating the dynamic stability of AMB-supported compressors[C]// Proceedings of the 16th International Symposium on Magnetic Bearings. Beijing: [s. n,], 2018.
    [11] SMITHANI J, PAUL Y. Applying API 617, 8th edition to expander-compressors with active magnetic bearings[C]//Proceedings of the 44th Turbomachinery & 31st Pump Symposium. Houston: [s. n.], 2015.
    [12] SWANSON E, HAWKINS L, MASALA A. New active magnetic bearing requirements for compressors in API 617 eight edition[C]//Proceedings of the 43rd Turbomachinery Symposium. Houston: [s. n.], 2014.
    [13] 胡永,肖忠会,王玉旌,等. 电磁轴承支撑系统转子动力学分析[C]//第十六届沈阳科学学术年会论文集:理工农医. 沈阳:[出版社不详], 2019.
    [14] 张越,周瑾,金超武,等. 一种磁悬浮旋转机械系统在线频率响应测试方法:中国,ZL202110545692.8[P]. 2022-08-12.
    [15] ZHANG Y, ZHOU J, ZHANG Y B, et al. Modelling and vibration response of a magnetically suspended flexible rotor considering base motion[J]. Applied Mathematical Modelling, 2023, 118: 518-540. doi: 10.1016/j.apm.2023.01.020
    [16] 周扬,周瑾,王艺宇,等. 考虑界面接触的磁悬浮轴承-转子系统建模及鲁棒控制[J]. 西南交通大学学报,2024,59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510

    ZHOU Yang, ZHOU Jin, WANG Yiyu, et al. Modeling and robust control of magnetic bearing-rotor system considering interface contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [17] 金超武,辛宇,周扬,等. 高温磁悬浮轴承-转子系统建模与动力学分析[J]. 西南交通大学学报,2024,59(4): 746-754,822. doi: 10.3969/j.issn.0258-2724.20230667

    JIN Chaowu, XIN Yu, ZHOU Yang, et al. Modeling and dynamics analysis of high-temperature magnetic bearing-rotor system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754,822. doi: 10.3969/j.issn.0258-2724.20230667
    [18] XU Y P, ZHOU J, DI L, et al. Active magnetic bearings dynamic parameters identification from experimental rotor unbalance response[J]. Mechanical Systems and Signal Processing, 2017, 83: 228-240. doi: 10.1016/j.ymssp.2016.06.009
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-11-05
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回