Lithium-Ion Battery Failure Identification Based on Segmented Penalty Parameter Support Vector Machine Algorithm
-
摘要:
针对机载锂电池失效识别等样本不平衡的应用场景,支持向量机(support vector machine,SVM)算法存在分离超平面偏移问题,提出分段惩罚参数支持向量机(segmented penalty parameters support vector machine,SPP-SVM)算法. SPP-SVM在训练过程中将样本分段,根据各段内样本的识别误差,自动调整其惩罚参数,从而抑制超平面偏移;基于容量增量分析和灰色关联分析等方法提取并筛选特征,进而基于SPP-SVM算法建立锂电池失效识别模型;以NASA锂电池数据集和加州大学欧文分校(University of California Irvine,UCI)数据集为对象,开展对比实验. 研究结果表明:与结合寻优算法的SVM相比,SPP-SVM算法识别性能更好,在不平衡程度较大的锂电池数据上,F1值提升了11.7%;在锂电池数据集和UCI数据集上的训练耗时降低了10倍以上;证明在样本不平衡情况下,使用SPP-SVM算法能够有效抑制分离超平面偏移,提升识别效果.
-
关键词:
- 锂离子电池 /
- 失效识别 /
- 支持向量机 /
- 样本不平衡 /
- 分段惩罚参数支持向量机
Abstract:In the application scenarios of unbalanced samples such as airborne lithium-ion battery failure identification, the support vector machine (SVM) algorithm has the problem of hyperplane offset separation. To address this issue, the segmented penalty parameter support vector machine (SPP-SVM) algorithm was proposed. The SPP-SVM divided all samples into different segments during the training process and automatically adjusted the penalty parameters of each sample based on the identification errors within each segment, thereby achieving hyperplane offset suppression. The features were extracted and screened based on capacity increment analysis and grey correlation analysis methods, and then, the lithium-ion battery failure identification model was established based on the SPP-SVM algorithm. By utilizing the NASA lithium-ion battery dataset and the University of California Irvine (UCI) datasets as experimental subjects, comparative experiments were conducted. The results show that the SPP-SVM algorithm has better identification performance than SVM combined with optimization algorithms. On the lithium-ion battery dataset with a large degree of imbalance, the F1 score is improved by 11.7%. The SPP-SVM algorithm reduces the training time on the lithium-ion battery dataset and UCI dataset, offering a tenfold improvement. These results demonstrate that the SPP-SVM algorithm can effectively suppress hyperplane separation offset and improve identification performance in cases of sample imbalance.
-
表 1 NASA实验所用锂电池参数
Table 1. Parameters of lithium-ion battery used in NASA experiments
参数类型 参数值 电池型号 18650 最大充电截止电压/V 4.20 最小放电截止电压/V 2.75 额定电压/V 3.6 出厂额定容量/A·h 2 充电温度范围/℃ 0~45 放电温度范围/℃ −20~60 表 2 锂电池数据集上识别效果
Table 2. Identification results on lithium-ion battery dataset
算法 准确率 查准率 查全率 F1 误差率 耗时/s SVM 0.936 0.886 0.799 0.841 0.064 0.103 GA-SVM 0.978 0.928 0.969 0.948 0.022 64.399 PSO-SVM 0.978 0.928 0.969 0.948 0.022 24.424 SPP-SVM 0.979 0.954 0.95 0.952 0.021 1.391 表 3 样本不平衡的锂电池数据集T1上识别效果
Table 3. Identification results on lithium-ion battery dataset T1 with sample imbalance
算法 准确率 查准率 查全率 F1 误差率 耗时/s SVM 0.929 0.852 0.688 0.807 0.071 0.081 GA-SVM 0.973 0.956 0.878 0.915 0.027 55.131 PSO-SVM 0.966 0.898 0.898 0.898 0.034 21.994 SPP-SVM 0.979 0.943 0.931 0.936 0.021 1.325 表 4 样本不平衡的锂电池数据集T2上识别效果
Table 4. Identification results on lithium-ion battery dataset T2 with sample imbalance
算法 准确率 查准率 查全率 F1 误差率 耗时/s SVM 0.939 0 0 0 0.061 0.041 GA-SVM 0.962 0.75 0.563 0.643 0.038 31.211 PSO-SVM 0.962 0.75 0.563 0.643 0.038 12.407 SPP-SVM 0.985 0.857 0.919 0.883 0.015 0.935 表 5 UCI数据集识别效果
Table 5. Identification results on UCI datasets
数据集 算法 准确率 查准率 查全率 F1值 误差率 耗时/s Ionosphere
b vs g
(112 113)
(112 113)SVM 0.886 0.938 0.833 0.882 0.114 0.075 GA-SVM 0.943 1.000 0.841 0.914 0.057 403.936 PSO-SVM 0.949 1.000 0.857 0.923 0.051 91.848 SPP-SVM 0.950 0.960 0.900 0.929 0.050 2.833 Abalone
11 vs 16
(244 34)
(243 33)SVM 0.893 0 0 0 0.107 0.062 GA-SVM 0.878 0.500 0.529 0.514 0.122 342.219 PSO-SVM 0.878 0.500 0.529 0.514 0.122 98.610 SPP-SVM 0.900 0.624 0.614 0.619 0.100 5.227 Ecoli
im vs pp
(39 26)
(38 26)SVM 0.809 0.759 0.679 0.717 0.191 0.014 GA-SVM 0.908 0.813 1.000 0.897 0.092 17.118 PSO-SVM 0.923 0.889 0.923 0.906 0.077 4.143 SPP-SVM 0.940 0.913 0.942 0.927 0.060 0.368 Monk2
1 vs 2
(104 64)
(289 142)SVM 0.671 0 0 0 0.338 0.005 GA-SVM 0.805 0.649 0.887 0.750 0.195 155.723 PSO-SVM 0.821 0.688 0.838 0.756 0.179 52.762 SPP-SVM 0.828 0.695 0.852 0.766 0.172 0.227 Monk3
1 vs 2
(59 62)
(227 204)SVM 0.912 0.874 0.951 0.911 0.088 0.002 GA-SVM 0.961 0.979 0.936 0.957 0.039 59.241 PSO-SVM 0.959 1.000 0.919 0.958 0.041 29.379 SPP-SVM 0.963 0.948 0.975 0.961 0.037 0.095 -
[1] 宋清超,陈家伟,蔡坤城,等. 多电飞机用燃料电池-蓄电池-超级电容混合供电系统的高可靠动态功率分配技术[J]. 电工技术学报,2022,37(2): 445-458.SONG Qingchao, CHEN Jiawei, CAI Kuncheng, et al. A highly reliable power allocation technology for the fuel cell-battery-supercapacitor hybrid power supply system of a more electric aircraft[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 445-458. [2] 盘朝奉,刘兵,陈龙,等. 锂离子电池温升特性分析及液冷结构设计[J]. 西南交通大学学报,2020,55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241PAN Chaofeng, LIU Bing, CHEN Long, et al. Temperature rise characteristic analysis and liquid cooling structure design of lithium battery[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241 [3] National Transportation Safety Board, U. S. Auxiliary power unit battery fire, Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January7, 2013[R]. Washington DC: National Transportation Safety Board, 2014. [4] IEEE Power and Energy Society. IEEE recommended practice for maintenance, testing, and replacement of Valve-Regulated Lead-Acid (VRLA) batteries for stationary applications: IEEE 1188aTM—2014[S]. New York: Stationary Batteries Committee, 2014. [5] YANG Y L, CHEN S Y, CHEN T, et al. State of health assessment of lithium-ion batteries based on deep Gaussian process regression considering heterogeneous features[J]. Journal of Energy Storage, 2023, 61: 106797.1-106797.16. [6] YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015.1-128015.21. [7] WU L X, LIU K, PANG H, et al. Online SOC estimation based on simplified electrochemical model for lithium-ion batteries considering current bias[J]. Energies, 2021, 14(17): 5265.1-5265.12. [8] GENG Z Y, WANG S Y, LACEY M J, et al. Bridging physics-based and equivalent circuit models for lithium-ion batteries[J]. Electrochimica Acta, 2021, 372: 137829.1-137829.9. [9] 刘伟,杨耕,孟德越,等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报,2021,36(24): 5186-5200.LIU Wei, YANG Geng, MENG Deyue, et al. Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200. [10] ZHANG K, YIN J X, HE Y Z. Acoustic emission detection and analysis method for health status of lithium ion batteries[J]. Sensors, 2021, 21(3): 712.1-712.17. [11] 石伟杰,王海民. 基于锂离子电池热特性的SOH在线诊断模型研究[J]. 仪器仪表学报,2020,41(8): 206-216.SHI Weijie, WANG Haimin. On-line diagnosis model of SOH based on thermal characteristics of lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 206-216. [12] 张雪霞,高雨璇,陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报,2020,55(2): 417-427.ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. [13] 吴祎. 锂离子电池健康评估及失效分析关键技术研究[D]. 南京:南京航空航天大学,2020. [14] 杨飞,郝晓莉,杨建,等. 基于多车型CNN-GRU性能预测模型的轨道状态评价[J]. 西南交通大学学报,2023,58(2): 322-331.YANG Fei, HAO Xiaoli, YANG Jian, et al. Track condition evaluation for multi-vehicle performance prediction model based on convolutional neural network and gated recurrent unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331. [15] AHMED H O A, YU Y X, WANG Q H, et al. Intelligent fault diagnosis framework for modular multilevel converters in HVDC transmission[J]. Sensors, 2022, 22(1): 362.1-362.23. [16] 张敏,蔡振宇,包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报,2019,54(3): 633-639,662. doi: 10.3969/j.issn.0258-2724.20170435ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639,662. doi: 10.3969/j.issn.0258-2724.20170435 [17] ZHOU D, ZHUANG X, ZUO H F, et al. Deep learning-based approach for civil aircraft hazard identification and prediction[J]. IEEE Access, 2020, 8: 103665-103683. doi: 10.1109/ACCESS.2020.2997371 [18] 由智超,高宏力,郭亮,等. 基于改进信息熵的直接刀具状态监测设备部署[J]. 西南交通大学学报,2024,59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025YOU Zhichao, GAO Hongli, GUO Liang, et al. Equipment deployment of direct tool-condition monitoring based on improved information entropy[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025 [19] 夏英,刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报,2023,58(2): 340-347.XIA Ying, LIU Min. Traffic flow prediction based on spatial-temporal attention convolutional neural network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347. [20] 杨军,高志明,李金泰,等. 基于注意力机制的三维点云模型对应关系计算[J]. 西南交通大学学报,2024,59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682YANG Jun, GAO Zhiming, LI Jintai, et al. Correspondence calculation of three-dimensional point cloud model based on attention mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682 [21] 王中豪,郭喜峰,杨星宇. 基于人工智能算法的隧道锚承载能力评价[J]. 西南交通大学学报,2021,56(3): 534-540.WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing capacity evaluation of tunnel-type anchorage based on artificial intelligent algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540. [22] Teledyne Company. Gill dry-charged lead-acid aircraft battery service manual: Q01-1120[EB/OL]. (2021-03-16)[2023-04-15]. www. gillbatteries. com. [23] 陈维荣,李锦程,李奇. 燃料电池小型车SOC动态调节的功率跟随控制策略[J]. 西南交通大学学报,2021,56(1): 197-205.CHEN Weirong, LI Jincheng, LI Qi. Power following control strategy of SOC dynamic adjustment for small fuel-cell cars[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 197-205. [24] 刘桓龙. 电液混合动力系统关键技术及能量管理研究综述[J]. 西南交通大学学报,2024,59(3): 600-614. doi: 10.3969/j.issn.0258-2724.20211011LIU Huanlong. Summary of research on key technologies and energy management of electro-hydraulic hybrid powertrain[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 600-614. doi: 10.3969/j.issn.0258-2724.20211011 [25] ROSALES-PEREZ A, GARCIA S, HERRERA F. Handling imbalanced classification problems with support vector machines via evolutionary bilevel optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 4735-4747. doi: 10.1109/TCYB.2022.3163974 [26] HUANG W C, LIU H Y, ZHANG Y, et al. Railway dangerous goods transportation system risk identification: Comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM[J]. Applied Soft Computing, 2021, 109: 107541.1-107541.16. [27] 黄英,王拓,裴海俊,等. 基于运行工况和多分类支持向量机的柴油机共轨系统诊断方法[J]. 北京理工大学学报,2023,43(7): 719-725.HUANG Ying, WANG Tuo, PEI Haijun, et al. Diagnosis method of diesel common rail system based on operating conditions and multi-category support vector machine[J]. Transactions of Beijing Institute of Technology, 2023, 43(7): 719-725. [28] 张血琴,高润明,郭裕钧,等. 基于高光谱的复合绝缘子电晕老化状态评估[J]. 西南交通大学学报,2020,55(2): 442-449. doi: 10.3969/j.issn.0258-2724.20181062ZHANG Xueqin, GAO Runming, GUO Yujun, et al. Hyperspectral-based corona aging evaluation for composite insulators[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 442-449. doi: 10.3969/j.issn.0258-2724.20181062 [29] WANG L M, QIAO S B, LU D, et al. State of health estimation of lithium-ion battery in wide temperature range via temperature-aging coupling mechanism analysis[J]. Journal of Energy Storage, 2022, 47: 103618.1-103618.10. -