• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于分段惩罚参数SVM算法的锂电池失效识别

金辉 胡寅逍 葛红娟 刘薇薇 李炳浩 李文臣 桑益芹

金辉, 胡寅逍, 葛红娟, 刘薇薇, 李炳浩, 李文臣, 桑益芹. 基于分段惩罚参数SVM算法的锂电池失效识别[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230287
引用本文: 金辉, 胡寅逍, 葛红娟, 刘薇薇, 李炳浩, 李文臣, 桑益芹. 基于分段惩罚参数SVM算法的锂电池失效识别[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230287
JIN Hui, HU Yinxiao, GE Hongjuan, LIU Weiwei, LI Binghao, LI Wenchen, SANG Yiqin. Lithium-Ion Battery Failure Identification Based on Segmented Penalty Parameter Support Vector Machine Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230287
Citation: JIN Hui, HU Yinxiao, GE Hongjuan, LIU Weiwei, LI Binghao, LI Wenchen, SANG Yiqin. Lithium-Ion Battery Failure Identification Based on Segmented Penalty Parameter Support Vector Machine Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230287

基于分段惩罚参数SVM算法的锂电池失效识别

doi: 10.3969/j.issn.0258-2724.20230287
基金项目: 国家基金委民航联合基金项目(U2233205,U2133203)
详细信息
    作者简介:

    金辉(1998—),男,博士研究生,研究方向为机载设备安全性,E-mail:jin_hui@nuaa.edu.cn

    通讯作者:

    葛红娟(1966—),女,教授,博士,研究方向为航空电源系统设计、验证与安全性评估,E-mail:allenge@nuaa.edu.cn

  • 中图分类号: U262.44

Lithium-Ion Battery Failure Identification Based on Segmented Penalty Parameter Support Vector Machine Algorithm

  • 摘要:

    针对机载锂电池失效识别等样本不平衡的应用场景,支持向量机(support vector machine,SVM)算法存在分离超平面偏移问题,提出分段惩罚参数支持向量机(segmented penalty parameters support vector machine,SPP-SVM)算法. SPP-SVM在训练过程中将样本分段,根据各段内样本的识别误差,自动调整其惩罚参数,从而抑制超平面偏移;基于容量增量分析和灰色关联分析等方法提取并筛选特征,进而基于SPP-SVM算法建立锂电池失效识别模型;以NASA锂电池数据集和加州大学欧文分校(University of California Irvine,UCI)数据集为对象,开展对比实验. 研究结果表明:与结合寻优算法的SVM相比,SPP-SVM算法识别性能更好,在不平衡程度较大的锂电池数据上,F1值提升了11.7%;在锂电池数据集和UCI数据集上的训练耗时降低了10倍以上;证明在样本不平衡情况下,使用SPP-SVM算法能够有效抑制分离超平面偏移,提升识别效果.

     

  • 图 1  锂电池数据集训练中分离超平面偏移

    Figure 1.  Hyperplane offset separation in lithium-ion battery dataset training

    图 2  SPP-SVM算法流程

    Figure 2.  SPP-SVM algorithm flow

    图 3  滤波后不同充电次数下的IC曲线

    Figure 3.  IC curve under different charging times after filtering

    图 4  训练中SVM与SPP-SVM各指标变化对比

    Figure 4.  Comparison of changes in each index between SVM and SPP-SVM during training

    图 5  不同分段程度下SPP-SVM训练过程指标变化

    Figure 5.  Index changes during SPP-SVM training process under different segmentation levels

    表  1  NASA实验所用锂电池参数

    Table  1.   Parameters of lithium-ion battery used in NASA experiments

    参数类型 参数值
    电池型号 18650
    最大充电截止电压/V 4.20
    最小放电截止电压/V 2.75
    额定电压/V 3.6
    出厂额定容量/A·h 2
    充电温度范围/℃ 0~45
    放电温度范围/℃ −20~60
    下载: 导出CSV

    表  2  锂电池数据集上识别效果

    Table  2.   Identification results on lithium-ion battery dataset

    算法 准确率 查准率 查全率 F1 误差率 耗时/s
    SVM 0.936 0.886 0.799 0.841 0.064 0.103
    GA-SVM 0.978 0.928 0.969 0.948 0.022 64.399
    PSO-SVM 0.978 0.928 0.969 0.948 0.022 24.424
    SPP-SVM 0.979 0.954 0.95 0.952 0.021 1.391
    下载: 导出CSV

    表  3  样本不平衡的锂电池数据集T1上识别效果

    Table  3.   Identification results on lithium-ion battery dataset T1 with sample imbalance

    算法 准确率 查准率 查全率 F1 误差率 耗时/s
    SVM 0.929 0.852 0.688 0.807 0.071 0.081
    GA-SVM 0.973 0.956 0.878 0.915 0.027 55.131
    PSO-SVM 0.966 0.898 0.898 0.898 0.034 21.994
    SPP-SVM 0.979 0.943 0.931 0.936 0.021 1.325
    下载: 导出CSV

    表  4  样本不平衡的锂电池数据集T2上识别效果

    Table  4.   Identification results on lithium-ion battery dataset T2 with sample imbalance

    算法 准确率 查准率 查全率 F1 误差率 耗时/s
    SVM 0.939 0 0 0 0.061 0.041
    GA-SVM 0.962 0.75 0.563 0.643 0.038 31.211
    PSO-SVM 0.962 0.75 0.563 0.643 0.038 12.407
    SPP-SVM 0.985 0.857 0.919 0.883 0.015 0.935
    下载: 导出CSV

    表  5  UCI数据集识别效果

    Table  5.   Identification results on UCI datasets

    数据集 算法 准确率 查准率 查全率 F1值 误差率 耗时/s
    Ionosphere
    b vs g
    (112 113)
    (112 113)
    SVM 0.886 0.938 0.833 0.882 0.114 0.075
    GA-SVM 0.943 1.000 0.841 0.914 0.057 403.936
    PSO-SVM 0.949 1.000 0.857 0.923 0.051 91.848
    SPP-SVM 0.950 0.960 0.900 0.929 0.050 2.833
    Abalone
    11 vs 16
    (244 34)
    (243 33)
    SVM 0.893 0 0 0 0.107 0.062
    GA-SVM 0.878 0.500 0.529 0.514 0.122 342.219
    PSO-SVM 0.878 0.500 0.529 0.514 0.122 98.610
    SPP-SVM 0.900 0.624 0.614 0.619 0.100 5.227
    Ecoli
    im vs pp
    (39 26)
    (38 26)
    SVM 0.809 0.759 0.679 0.717 0.191 0.014
    GA-SVM 0.908 0.813 1.000 0.897 0.092 17.118
    PSO-SVM 0.923 0.889 0.923 0.906 0.077 4.143
    SPP-SVM 0.940 0.913 0.942 0.927 0.060 0.368
    Monk2
    1 vs 2
    (104 64)
    (289 142)
    SVM 0.671 0 0 0 0.338 0.005
    GA-SVM 0.805 0.649 0.887 0.750 0.195 155.723
    PSO-SVM 0.821 0.688 0.838 0.756 0.179 52.762
    SPP-SVM 0.828 0.695 0.852 0.766 0.172 0.227
    Monk3
    1 vs 2
    (59 62)
    (227 204)
    SVM 0.912 0.874 0.951 0.911 0.088 0.002
    GA-SVM 0.961 0.979 0.936 0.957 0.039 59.241
    PSO-SVM 0.959 1.000 0.919 0.958 0.041 29.379
    SPP-SVM 0.963 0.948 0.975 0.961 0.037 0.095
    下载: 导出CSV
  • [1] 宋清超,陈家伟,蔡坤城,等. 多电飞机用燃料电池-蓄电池-超级电容混合供电系统的高可靠动态功率分配技术[J]. 电工技术学报,2022,37(2): 445-458.

    SONG Qingchao, CHEN Jiawei, CAI Kuncheng, et al. A highly reliable power allocation technology for the fuel cell-battery-supercapacitor hybrid power supply system of a more electric aircraft[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 445-458.
    [2] 盘朝奉,刘兵,陈龙,等. 锂离子电池温升特性分析及液冷结构设计[J]. 西南交通大学学报,2020,55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241

    PAN Chaofeng, LIU Bing, CHEN Long, et al. Temperature rise characteristic analysis and liquid cooling structure design of lithium battery[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241
    [3] National Transportation Safety Board, U. S. Auxiliary power unit battery fire, Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January7, 2013[R]. Washington DC: National Transportation Safety Board, 2014.
    [4] IEEE Power and Energy Society. IEEE recommended practice for maintenance, testing, and replacement of Valve-Regulated Lead-Acid (VRLA) batteries for stationary applications: IEEE 1188aTM—2014[S]. New York: Stationary Batteries Committee, 2014.
    [5] YANG Y L, CHEN S Y, CHEN T, et al. State of health assessment of lithium-ion batteries based on deep Gaussian process regression considering heterogeneous features[J]. Journal of Energy Storage, 2023, 61: 106797.1-106797.16.
    [6] YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015.1-128015.21.
    [7] WU L X, LIU K, PANG H, et al. Online SOC estimation based on simplified electrochemical model for lithium-ion batteries considering current bias[J]. Energies, 2021, 14(17): 5265.1-5265.12.
    [8] GENG Z Y, WANG S Y, LACEY M J, et al. Bridging physics-based and equivalent circuit models for lithium-ion batteries[J]. Electrochimica Acta, 2021, 372: 137829.1-137829.9.
    [9] 刘伟,杨耕,孟德越,等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报,2021,36(24): 5186-5200.

    LIU Wei, YANG Geng, MENG Deyue, et al. Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200.
    [10] ZHANG K, YIN J X, HE Y Z. Acoustic emission detection and analysis method for health status of lithium ion batteries[J]. Sensors, 2021, 21(3): 712.1-712.17.
    [11] 石伟杰,王海民. 基于锂离子电池热特性的SOH在线诊断模型研究[J]. 仪器仪表学报,2020,41(8): 206-216.

    SHI Weijie, WANG Haimin. On-line diagnosis model of SOH based on thermal characteristics of lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 206-216.
    [12] 张雪霞,高雨璇,陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报,2020,55(2): 417-427.

    ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427.
    [13] 吴祎. 锂离子电池健康评估及失效分析关键技术研究[D]. 南京:南京航空航天大学,2020.
    [14] 杨飞,郝晓莉,杨建,等. 基于多车型CNN-GRU性能预测模型的轨道状态评价[J]. 西南交通大学学报,2023,58(2): 322-331.

    YANG Fei, HAO Xiaoli, YANG Jian, et al. Track condition evaluation for multi-vehicle performance prediction model based on convolutional neural network and gated recurrent unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331.
    [15] AHMED H O A, YU Y X, WANG Q H, et al. Intelligent fault diagnosis framework for modular multilevel converters in HVDC transmission[J]. Sensors, 2022, 22(1): 362.1-362.23.
    [16] 张敏,蔡振宇,包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报,2019,54(3): 633-639,662. doi: 10.3969/j.issn.0258-2724.20170435

    ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639,662. doi: 10.3969/j.issn.0258-2724.20170435
    [17] ZHOU D, ZHUANG X, ZUO H F, et al. Deep learning-based approach for civil aircraft hazard identification and prediction[J]. IEEE Access, 2020, 8: 103665-103683. doi: 10.1109/ACCESS.2020.2997371
    [18] 由智超,高宏力,郭亮,等. 基于改进信息熵的直接刀具状态监测设备部署[J]. 西南交通大学学报,2024,59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025

    YOU Zhichao, GAO Hongli, GUO Liang, et al. Equipment deployment of direct tool-condition monitoring based on improved information entropy[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025
    [19] 夏英,刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报,2023,58(2): 340-347.

    XIA Ying, LIU Min. Traffic flow prediction based on spatial-temporal attention convolutional neural network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347.
    [20] 杨军,高志明,李金泰,等. 基于注意力机制的三维点云模型对应关系计算[J]. 西南交通大学学报,2024,59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682

    YANG Jun, GAO Zhiming, LI Jintai, et al. Correspondence calculation of three-dimensional point cloud model based on attention mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682
    [21] 王中豪,郭喜峰,杨星宇. 基于人工智能算法的隧道锚承载能力评价[J]. 西南交通大学学报,2021,56(3): 534-540.

    WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing capacity evaluation of tunnel-type anchorage based on artificial intelligent algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540.
    [22] Teledyne Company. Gill dry-charged lead-acid aircraft battery service manual: Q01-1120[EB/OL]. (2021-03-16)[2023-04-15]. www. gillbatteries. com.
    [23] 陈维荣,李锦程,李奇. 燃料电池小型车SOC动态调节的功率跟随控制策略[J]. 西南交通大学学报,2021,56(1): 197-205.

    CHEN Weirong, LI Jincheng, LI Qi. Power following control strategy of SOC dynamic adjustment for small fuel-cell cars[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 197-205.
    [24] 刘桓龙. 电液混合动力系统关键技术及能量管理研究综述[J]. 西南交通大学学报,2024,59(3): 600-614. doi: 10.3969/j.issn.0258-2724.20211011

    LIU Huanlong. Summary of research on key technologies and energy management of electro-hydraulic hybrid powertrain[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 600-614. doi: 10.3969/j.issn.0258-2724.20211011
    [25] ROSALES-PEREZ A, GARCIA S, HERRERA F. Handling imbalanced classification problems with support vector machines via evolutionary bilevel optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 4735-4747. doi: 10.1109/TCYB.2022.3163974
    [26] HUANG W C, LIU H Y, ZHANG Y, et al. Railway dangerous goods transportation system risk identification: Comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM[J]. Applied Soft Computing, 2021, 109: 107541.1-107541.16.
    [27] 黄英,王拓,裴海俊,等. 基于运行工况和多分类支持向量机的柴油机共轨系统诊断方法[J]. 北京理工大学学报,2023,43(7): 719-725.

    HUANG Ying, WANG Tuo, PEI Haijun, et al. Diagnosis method of diesel common rail system based on operating conditions and multi-category support vector machine[J]. Transactions of Beijing Institute of Technology, 2023, 43(7): 719-725.
    [28] 张血琴,高润明,郭裕钧,等. 基于高光谱的复合绝缘子电晕老化状态评估[J]. 西南交通大学学报,2020,55(2): 442-449. doi: 10.3969/j.issn.0258-2724.20181062

    ZHANG Xueqin, GAO Runming, GUO Yujun, et al. Hyperspectral-based corona aging evaluation for composite insulators[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 442-449. doi: 10.3969/j.issn.0258-2724.20181062
    [29] WANG L M, QIAO S B, LU D, et al. State of health estimation of lithium-ion battery in wide temperature range via temperature-aging coupling mechanism analysis[J]. Journal of Energy Storage, 2022, 47: 103618.1-103618.10.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-10-25
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回