A Simple Generalized Method for Unified Constitutive Model of Clay and Sand
-
摘要:
为统一描述砂土和黏土在广义应力路径下的力学响应,在具有状态参数的砂黏统一本构模型CASM的基础上,结合次加载面理论和变换应力法,提出一种适用于广义加载条件的统一临界状态本构模型(CASM-SG模型). 该模型基于原始CASM模型,结合次加载面概念建立一种与土体初始状态相关的塑性内变量,并利用变换应力法成功将原先由三轴压缩实验确定的二维屈服包面拓展到三维应力空间;构建广义应力条件下CASM-SG模型的应力剪胀关系和硬化准则等完整本构框架,并基于一致性条件推导出其塑性模量与弹塑性刚度矩阵的显式表达式;采用新提出的模型对Hostun砂土和Fujinomori黏土在排水与不排水三轴压缩及拉伸条件下的力学行为进行模拟. 模拟结果显示:CASM-SG模型能够较为准确地捕捉砂土和黏土在不同应力路径下的力学行为;对于Fujinomori黏土,三轴拉伸强度相对三轴压缩强度降低了24%左右,CASM-SG模型能够精确捕捉这一特征;相比原始CASM模型,该模型仅增加了2个具备明确物理意义的材料参数,但体现出良好的精度与简洁性兼顾的建模优势.
Abstract:To consistently describe the mechanical response of sand and clay under generalized stress paths, a unified critical state constitutive model (CASM-SG) applicable to generalized loading conditions was proposed based on the unified constitutive clay and sand model (CASM) with state parameters and by employing the subloading surface theory and the transformed stress method. In the model based on the original CASM model, a plastic internal variable associated with the initial state of the soil was established by using the concept of subloading surface, and the original two-dimensional yield surface determined from triaxial compression tests was transformed into the three-dimensional stress space through the transformed stress method. A complete constitutive framework was constructed for the CASM-SG model under generalized stress conditions, including the stress dilatancy relationship and the hardening rule. Explicit expressions for the plastic modulus and the elastoplastic stiffness matrix were derived based on the consistency condition. Finally, the proposed model was employed to simulate the mechanical behavior of Hostun sand and Fujinomori clay under drained and undrained triaxial compression and extension conditions. The simulation results indicate that the CASM-SG model can accurately capture the mechanical behavior of both sand and clay under various stress paths. For Fujinomori clay, the triaxial extension strength decreases by approximately 24% compared with the triaxial compression strength, and the CASM-SG model captures this characteristic. Compared to the original CASM model, the CASM-SG model introduces two additional material parameters with clear physical interpretations, demonstrating a favorable balance between modeling accuracy and simplicity.
-
Key words:
- generalized stress space /
- sand /
- clay /
- constitutive model /
- transformed stress method
-
在实际岩土工程应用中,土体往往处于三维应力状态. 在三维应力状态下,土体的强度由平均应力,剪应力以及应力洛德角同时确定[1-7]. 因此,建立一种本构模型对处于广义应力条件下的土体力学响应进行合理地描述,是确保岩土工程设计、施工、维护成功进行的关键.
近几十年来,随着临界状态理论的提出,后继研究者们基于临界状态土力学提出一系列卓具成效的本构理论. 其中包括剑桥模型(CC model)和修正剑桥模型(MCC model)[8, 9],统一硬化模型(UH model)[10-12],SANISAND模型[13],砂土液化大变形统一本构模型等[14-16]. 这些模型已经在不同的领域得到了验证和应用. 然而,Yu[17]认为一个成功土体本构模型应该在保证材料参数足够少的情况下尽可能对大范围内的不同土种进行统一的描述. 基于此,Yu[18]在临界状态理论的基础上,结合状态参数和参考状态参数的概念,提出著名的CASM (Clay and Sand Model)模型. CASM模型本构关系简洁,材料参数物理意义明确,可以同时适用于黏土和砂土,因此,已经被广泛应用于实际工程问题中. 例如Mo等[19]使用CASM模型来研究隧道-土-桩相互作用. Yu等[20]将CASM模型应用于小孔扩张和隧道开挖等问题中. 尽管CASM模型在实际应用方面已经取得了巨大成功,需要指出的是,原始的CASM模型屈服面是基于三轴压缩实验建立的(即建立在p - q平面上),没有考虑土体强度与应力洛德角θ之间的关系. 然而,大量实验结果已经证明,土体的强度和变形特性与应力洛德角密切相关. 因此,为对处于三维应力条件下土体的力学响应进行准确预测,必须将CASM模型拓展到广义应力空间中.
为对CASM模型进行广义化,Khong[21]曾尝试采用洛德角形函数法将应力洛德角的影响纳入到CASM模型的屈服准则中,并建立三维CASM模型的本构关系. 使用洛德角形函数法广义化本构模型时,需要求解屈服函数对洛德角的一阶甚至二阶偏导数,这会使得本构模型的数值实现复杂化. 更为严重的是,正如Yao等[22]指出,如果采用洛德角形函数法对本构模型进行广义化,屈服面可能会出现内凹或者不连续等问题,这与Drucker公设相悖,并对本构模型的数值实现造成棘手的问题. 基于此,和Yao等[22]和Matsuoka等[23]提出一种简单的本构模型广义化方法,该方法被称作变换应力法(TS方法). TS方法的优势在于可以结合任意强度准则,在不引入额外的材料参数的情况下将基于三轴压缩实验建立的本构关系拓展到广义应力空间中. 并且TS方法规避了采用洛德角形函数法时出现的屈服轨迹不连续等问题. 基于该方法,剑桥模型(Cam-Clay model)和统一硬化模型(UH model)已经被成功拓展到广义应力空间中[24-27].
为对处于广义应力条件下的砂土和黏土的力学响应作出统一描述,本文在CASM-S模型[28, 29]的基础上,结合次加载面概念和TS方法对模型进行修正,并提出CASM-SG模型. 首先,引入次加载面概念的目的是将传统弹塑性力学理论中定义的屈服面内纯弹性域修正为弹塑性域,通过这种修正使得CASM-S模型能够预测光滑的应力-应变曲线并增强对密砂和超固结土的预测能力[28];通过结合TS方法,在不引入额外参数的情况下,将CASM-S模型拓展到广义应力空间,使得模型能够考虑应力洛德角或者中主应力系数的影响;最后,利用CASM-SG模型对排水和不排水条件下Toyoura砂土和Fujinomori黏土的力学行为进行预测,以验证模型的准确性.
1. CASM-SG本构方程
1.1 临界状态理论和状态参数概念
临界状态理论是土力学建模领域的重要成果,它定义了土体的在剪切荷载作用下的极限状态. 图1为Yu[18]建立的CASM框架下临界状态线(CSL)和参考固结线(RCL)之间的关系. 图中:p为有效平均应力,e为孔隙比,e0和p0分别为初始孔隙比和初始平均应力,eΓ为CSL线在p = 1 kPa时对应的孔隙比,eN为RCL线在p = 1 kPa时的对应的孔隙比,ψ为状态参数,ψR为参考状态参数. 特别地,在临界状态下,土体的状态变量之间满足以下关系:
图 1 状态参数,参考状态参数在e-ln p空间中的示意[18]Figure 1. State and reference state parameters in e-ln p space{e=eΓ−λlnp ,q=Mp , (1) \left\{\begin{array}{l}p=\text{tr}\left({\boldsymbol{\sigma}} \right)/3\text{ }\text{,}\\ q=\sqrt{3/2}\Vert {\boldsymbol{s}}\Vert \text{ }\text{,}\\ {\boldsymbol{s}}={\boldsymbol{\sigma}} -p{\boldsymbol{\delta}} \text{ }\text{,}\end{array}\right. (2) 式中:\lambda 为CSL线的斜率;q为偏应力; {\boldsymbol{\sigma}} 和 {\boldsymbol{s}} 分别为应力张量和偏应力张量;M为临界状态应力比; {\boldsymbol{\delta}} 为克罗内克张量;tr(·)表示张量的迹. 进一步地,为了统一描述黏土和砂土的力学行为.
Been等[30]以及Yu[18]提出了状态参数和参考状态参数的概念,它们分别可由土体的状态变量表示为:
\left\{\begin{array}{l} \psi =e + \lambda \mathrm{ln}p-{e}_{\Gamma }\text{ }\text{,}\\ {\psi }_{{\mathrm{R}}}=\left(\lambda -\kappa \right)\mathrm{ln}\;r\text{ }\text{,}\end{array}\right. (3) r = {p_{\mathrm{x}}}/{p_{\mathrm{c}}} \text{,} (4) 式中:r为材料参数, \kappa 为回弹曲线(SL)的斜率, {p_{\mathrm{x}}} 为参考固结压力; {p_{\mathrm{c}}} 为临界状态压力.
在临界状态理论和状态参数概念的基础上,Yu[18]提出了原始的CASM模型. 然而,CASM模型没有考虑屈服面内的弹塑性变形和应力洛德角的影响,还需要进一步修正.
1.2 考虑次加载面概念的CASM模型屈服准则
在原始CASM模型中假设屈服面内为纯弹性域,这可能造成对应变软化行为不切实际的预测[31]. 为增强CASM的模拟能力,在CASM模型中引入次加载面的概念[29, 32-34],即CASM-S模型,如图2所示. 图中:{p_{\mathrm{s}}}为次加载面的尺寸,R为次加载面和屈服面的尺寸之比, {p_{\mathrm{Y}}} 和 {q_{\mathrm{Y}}} 分别为p和q在屈服面上的共轭应力点,\sigma_{\mathrm{Y}} 为共轭应力点对应的张量. 假设屈服面内存在一个次加载面,其尺寸由当前应力状态决定. 并且在加载过程中次加载面的形状时刻与屈服面保持相似,可以定义以下次加载面方程和屈服面方程
f = {\left( {\frac{q}{{Mp}}} \right)^n} + \frac{{\ln \left( {p/{p_{\mathrm{s}}}} \right)}}{{\ln \;r}} = 0\text{,} (5) {f_{\mathrm{Y}}} = {\left( {\frac{{{q_{\mathrm{Y}}}}}{{M{p_{\mathrm{Y}}}}}} \right)^n} + \frac{{\ln \left( {{p_{\mathrm{Y}}}/{p_{\mathrm{x}}}} \right)}}{{\ln\; r}} = 0\text{,} (6) \left\{\begin{array}{l} {p}_{{\mathrm{Y}}}=p/R\text{ }\text{,}\\ {q}_{{\mathrm{Y}}}=q/R\text{ }\text{,}\\ {p}_{{\mathrm{x}}}={p}_{s}/R\text{ }\text{,}\end{array}\right. (7) 式中:n为材料参数.
需要说明的是,上述屈服准则是基于三轴压缩实验建立的,没有考虑应力洛德角的影响. 如图3所示,在π平面上CASM-S的屈服轨迹是圆形的. 为了考虑应力洛德角的影响,需要对上述屈服准则进一步修正.
1.3 CASM-SG模型屈服准则
为将CASM-S模型推广到广义应力空间,可以采用TS方法[22],TS方法无需引入额外的材料参数,仅需采用一步应力修正,将真实应力张量 {\boldsymbol{\sigma}} 投影到变换应力空间(即TS空间)中,从而考虑应力洛德角的影响. 根据TS方法,变换应力张量 \tilde {\boldsymbol{\sigma}} 可以定义为
\tilde{{\boldsymbol{\sigma}} }=\left\{\begin{array}{l} {\boldsymbol{\sigma}},\quad q=0\text{,}\text{ }\\ p{\boldsymbol{\delta}} + \left({q}_{{\mathrm{c}}}/q\right){\boldsymbol{s}},\quad q\ne 0 \text{,}\end{array}\right. \text{,} (8) 式中: {q_{\mathrm{c}}} 为TS空间中的三轴压缩强度.
根据不同的强度准则, {q_{\mathrm{c}}} 的具体表达式有所不同,本文采用Lade强度准则,在此条件下, {q_{\mathrm{c}}} 可以表示为[10]
{q_{\mathrm{c}}} = {I_1}\left( {1 + \frac{J}{2}{{\left[ {\cos \left( {\frac{1}{3}{{\cos }^{ - 1}}J} \right)} \right]}^{ - 1}}} \right) \text{,} (9) \left\{\begin{array}{l}J=-\sqrt{27{I}_{3}/{I}_{1}^{3}}\text{ }\text{,}\\ {I}_{1}=\text{tr}\left({\boldsymbol{\sigma}} \right)\text{ }\text{,}\\ {I}_{3}=\text{det}\left({\boldsymbol{\sigma}} \right)\text{ }\text{,}\end{array}\right. (10) 式中:J为与应力有关的状态变量; {I_1} 和 {I_3} 分别为应力张量第一和第三不变量;det(·)表示张量的行列式.
将变换应力张量 \tilde {\boldsymbol{\sigma}} 代入到式(5)、(6)中,并假设材料参数n和r保持不变,可以得到TS空间中的次加载面方程和屈服面方程为
\tilde f = {\left( {\frac{{\tilde q}}{{M\tilde p}}} \right)^n} + \frac{{\ln \left( {\tilde p/{{\tilde p}_{\mathrm{s}}}} \right)}}{{\ln\; r}} = 0\text{,} (11) {\tilde f_{\mathrm{Y}}} = {\left( {\frac{{{{\tilde q}_{\mathrm{Y}}}}}{{M{p_{\mathrm{Y}}}}}} \right)^n} + \frac{{\ln \left( {{{\tilde p}_{\mathrm{Y}}}/{{\tilde p}_{\mathrm{x}}}} \right)}}{{\ln \;r}} = 0 \text{,} (12) \left\{\begin{array}{l}\tilde{p}=\text{tr}\left(\tilde{{\boldsymbol{\sigma}} }\right)/3\text{ }\text{,}\\ \tilde{q}=\sqrt{3/2}\Vert \tilde{{\boldsymbol{s}}}\Vert \text{ }\text{,}\\ \tilde{{\boldsymbol{s}}}=\tilde{{\boldsymbol{\sigma}} }-\tilde{p}{\boldsymbol{\delta}} \text{ }\text{,}\end{array}\right. (13) \left\{\begin{array}{l} {\tilde{p}}_{{\mathrm{Y}}}=\tilde{p}/\tilde{R}\text{ }\text{,}\\ {\tilde{q}}_{{\mathrm{Y}}}=\tilde{q}/\tilde{R}\text{ }\text{,}\\ {\tilde{p}}_{{\mathrm{x}}}={\tilde{p}}_{s}/\tilde{R}\text{ }\text{,}\end{array}\right. (14) 式中: \tilde p 和 \tilde q 分别为TS空间中的平均应力和偏应力, \tilde {\boldsymbol{s}} 为TS空间中的偏应力张量,{\tilde p_{\mathrm{x}}}为TS空间中的屈服面尺寸,{\tilde p_{\mathrm{s}}}为TS空间中的次加载面的尺寸, \tilde R 为TS空间中次加载面和屈服面的尺寸之比, {\tilde p_{\mathrm{Y}}} 和 {\tilde q_{\mathrm{Y}}} 分别为 \tilde p 和 \tilde q 在TS空间中屈服面上的共轭应力点.
使用式(11)、(12)作为CASM-SG模型的次加载面函数和屈服面函数,可以得到真实应力空间中CASM-SG模型的屈服轨迹,如图3所示. 图中,{\sigma _1}、{\sigma _2}、{\sigma _3}分别为大、中、小主应力. 在π平面上原始CASM-S模型的圆形屈服轨迹被修正为可以考虑应力洛德角影响的屈服轨迹.
1.4 流动准则
为完成CASM-SG本构关系的构建,需定义模型的流动准则. 有别于常规弹塑性模型,本文假设CASM-SG模型的塑性流动由TS空间中的次加载面决定,即塑性流动方向为TS空间中当前偏应力方向对应的屈服面法向方向,并假设模型服从非关联流动准则[34],则CASM-SG的流动准则可以定义为
{ {\boldsymbol{\varepsilon}} ^{\mathrm{p}}} = \gamma {\boldsymbol{N}}\text{,} (15) \left\{\begin{array}{l} {\boldsymbol{N}}=D{\boldsymbol{\delta}} /3 + \tilde{{\boldsymbol{n}}}\text{ }\text{,}\\ \tilde{{\boldsymbol{n}}}=\tilde{{\boldsymbol{s}}}/\Vert \tilde{{\boldsymbol{s}}}\Vert \text{ }\text{,}\end{array}\right. (16) 式中:{ {\boldsymbol{\varepsilon}} ^p}为塑性应变率张量; \gamma 为塑性乘子;{\boldsymbol{N}}为塑性流动方向;D为剪胀因子; \tilde {\boldsymbol{n}} 表示TS空间中次加载面偏平面的单位方向.
进一步地,剪胀因子D可以简单定义为
D = {d_0}\left( {M - \tilde q/\tilde p} \right)\text{,} (17) 式中:{d_0}为材料参数,控制模型的剪胀速率.
1.5 硬化准则
根据式(11),CASM-SG模型中次加载面的硬化行为由状态变量{\tilde p_{\mathrm{s}}}所控制,对式(14)进行微分,可以得到{\tilde p_{\mathrm{s}}}的率形式为
{ {\tilde p}_{\mathrm{s}}} = {\tilde p_x}\Delta {\tilde R} + \tilde R{\Delta {\tilde p}_{\mathrm{x}}} \text{,} (18) 式中:变量前面加Δ表示该变量的增量,余同.
与CC模型和MCC模型类似,假设 {\tilde p_x} 由塑性体积应变率 \Delta \varepsilon _{\mathrm{v}}^{\mathrm{p}} 控制,则 {\tilde p_{\mathrm{x}}} 的演化准则可以定义为
\left\{\begin{array}{l} {\Delta{\tilde{p}}}_{{\mathrm{x}}}=A{\tilde{p}}_{{\mathrm{x}}}{\Delta{\varepsilon }}_{{\mathrm{v}}}^{{\mathrm{p}}}\text{ }\text{,}\\ A=\dfrac{1 + {e}_{0}}{\lambda -\kappa }\text{ }\text{,}\end{array}\right. (19) \Delta \varepsilon _{\mathrm{v}}^{\mathrm{p}} = \sqrt {2/3} \gamma D . (20) 需要说明的是,也有模型采用当前孔隙比来定义A[28]. 另一方面,根据次加载面理论假设[32], \tilde R 仅在塑性加载过程中增大,因此可以将 \tilde R 的率形式简单定义为
\left\{\begin{array}{l} \Delta{\tilde{R}}={\gamma }U\text{ }\text{,}\\ U=-u\mathrm{ln}\tilde{R}\text{ }\text{,}\end{array}\right. (21) 式中:U为关于\tilde R的单调递减函数,用以确保\tilde R不会超过1,即次加载面尺寸不能超过屈服面的尺寸;u为材料参数,用于控制次加载面在加载过程中的演化速率.
在使用CASM-SG模型之前,必须确定硬化参数\tilde R和{\tilde p_{\mathrm{s}}}的初始值. 为初始化这2个硬化参数,需要严格按照CASM模型和次加载面的理论框架进行[28]. 根据次加载面理论假设,当前应力状态点在任意时刻处于次加载面上,则根据初始应力状态{p_0}和{q_0}可以确定次加载面的初始尺寸{p_{{\mathrm{s0}}}}为
{p_{{\text{s}}0}} = {p_0}\exp \left[ {{{\left( {\frac{{{q_0}}}{{M{p_0}}}} \right)}^n}\ln\; r} \right]. (22) 根据CASM模型假设,真实应力空间中初始参考固结压力{p_{x0}}可以定义为
{p}_{{\mathrm{x0}}}={p}_{0}\mathrm{exp}\left(\frac{{e}_{{\mathrm{N}}}-\lambda \mathrm{ln}{p}_{0}-{e}_{0}}{\lambda -\kappa }\right)\text{ }\text{,} (23) {e}_{{\mathrm{N}}}={e}_{\Gamma } + {\psi }_{{\mathrm{R}}}. (24) 进一步地,根据式(7),初始面尺寸比{R_0}可以定义为
{R}_{0}=\frac{{p}_{{\mathrm{s0}}}}{{p}_{{\mathrm{x0}}}}. (25) 假设TS空间中的初始面尺寸比 {\tilde R_0} = {R_0} ,则TS空间中的初始硬化参数 {\tilde p_{{\mathrm{x0}}}} 可以定义为
{\tilde{p}}_{{\mathrm{x0}}}=\frac{{\tilde{p}}_{0}}{{\tilde{R}}_{0}}\mathrm{exp}\left[{\left(\frac{{\tilde{q}}_{0}}{M{\tilde{p}}_{0}}\right)}^{n}\mathrm{ln}\;r\right]\text{ }\text{,} (26) 1.6 应力-应变关系
根据弹塑性力学基本定理,可以将应变率张量\dot {\boldsymbol{\varepsilon}} 离散为如下形式:
\Delta {\boldsymbol{\varepsilon}} = {\Delta {\boldsymbol{\varepsilon}} ^{\mathrm{e}}} + {\Delta {\boldsymbol{\varepsilon}} ^{\mathrm{p}}}\text{,} (27) 式中:{\Delta {\boldsymbol{\varepsilon}} ^{\mathrm{e}}}为弹性应变率张量.
根据广义虎克定律,应力和应变的关系可以定义为
\Delta {\boldsymbol{\sigma}} = {{\boldsymbol{C}}^{\mathrm{e}}}:{\Delta {\boldsymbol{\varepsilon}} ^{\mathrm{e}}} = {{\boldsymbol{C}}^{\mathrm{e}}}:\left( {\dot {\boldsymbol{\varepsilon}} - {{\Delta {\boldsymbol{\varepsilon}} }^{\mathrm{p}}}} \right) \text{,} (28) 式中: {{\boldsymbol{C}}^{\mathrm{e}}} 为弹性刚度矩阵,如式(29).
{{\boldsymbol{C}}}^{{\mathrm{e}}}=\left(K-\frac{2}{3}G\right){\boldsymbol{\delta}} \otimes {\boldsymbol{\delta}} + 2G{\boldsymbol{I}}\text{ }\text{,} (29) \left\{\begin{array}{l}K=\dfrac{\left(1 + {e}_{0}\right)p}{\kappa }\text{ }\text{,}\\ G=\dfrac{3(1-2\mu )}{2(1 + \mu )}K\text{ }\text{,}\end{array}\right. (30) 式中: K 为弹性模量; G 为剪切模量; \mu 为泊松比; {\boldsymbol{I}} 为四阶单位张量.
根据式(15)和(28),为获得CASM-SG模型的应力-应变关系,需求解塑性乘子 \gamma . 根据式(11),次加载面函数\tilde f的一致性条件可以表示为
\Delta {\tilde f} = \tilde f\left( {{\boldsymbol{\sigma}} + \dot {\boldsymbol{\sigma}} ,{\text{ }}{{\tilde p}_{\mathrm{s}}} + {{\Delta {\tilde p}}_{\mathrm{s}}}} \right) = 0\text{,} (31) 进一步地,将式(18)和(28)代入到式(31)中,可以得到塑性乘子的显式表达式为
\Delta \gamma = \frac{{{{\tilde {\boldsymbol{f}}}_1}:{{\boldsymbol{C}}^{\mathrm{e}}}: \Delta{\boldsymbol{\varepsilon}} }}{{H + {{\tilde {\boldsymbol{f}}}_1}:{{\boldsymbol{C}}^{\mathrm{e}}}:{\boldsymbol{N}}}} \text{,} (32) H = - \sqrt {2/3} {\tilde f_2}AD{\tilde p_x} - {\tilde f_3}U\text{,} (33) 式中:H为塑性模量; {\tilde {\boldsymbol{f}}_1} 、{\tilde f_2}、{\tilde f_3}分别为次加载面函数\tilde f对{\boldsymbol{ \sigma}} 、 {\tilde p_{\mathrm{x}}} 、 \tilde R 的偏导数,如式(34)~(38).
{\tilde {\boldsymbol{f}}_1} = \frac{{\partial \tilde f}}{{\partial \tilde p}}\frac{{\partial \tilde p}}{{\partial {\boldsymbol{\sigma}} }} + \frac{{\partial \tilde f}}{{\partial \tilde q}}\frac{{\partial \tilde q}}{{\partial {\boldsymbol{\sigma}} }} \text{,} (34) \left\{\begin{array}{l} \dfrac{\partial \tilde{f}}{\partial \tilde{p}}=\dfrac{1}{\tilde{p}\mathrm{ln}\;r}-\dfrac{n{\tilde{q}}^{n}}{{M}^{n}{\tilde{p}}^{n + 1}}\text{ }\text{,}\\ \dfrac{\partial \tilde{f}}{\partial \tilde{q}}=\dfrac{n{\tilde{q}}^{n-1}}{{M}^{n}{\tilde{p}}^{n}}\text{ }\text{,}\end{array}\right. (35) \left\{\begin{array}{l} \dfrac{\partial \tilde{p}}{\partial {\boldsymbol{\sigma}} }=\dfrac{{\boldsymbol{\delta}} }{3}\text{ }\text{,}\\ \dfrac{\partial \tilde{q}}{\partial {\boldsymbol{\sigma}} }=\dfrac{\partial {q}_{{\mathrm{c}}}}{\partial {\boldsymbol{\sigma}} }=\dfrac{\left({q}_{{\mathrm{c}}}^{2}-{I}_{1}^{2}\right){\boldsymbol{\delta}} + 9{\boldsymbol{B}}}{2{q}_{{\mathrm{c}}}\left({q}_{{\mathrm{c}}}-{I}_{1}\right)}\text{ }\text{,}\end{array}\right. (36) {\boldsymbol{B}} = \frac{1}{2}I_1^2{\boldsymbol{\delta}} - {I_1}{\boldsymbol{\sigma}} - \frac{1}{2}{\text{tr}}\left( {{\boldsymbol{\sigma}} \cdot {\boldsymbol{\sigma}} } \right){\boldsymbol{\delta}} + {\boldsymbol{\sigma}} \cdot {\boldsymbol{\sigma}} \text{,} (37) \left\{\begin{array}{l} {\tilde{f}}_{2}=-\dfrac{1}{{\tilde{p}}_{{\mathrm{x}}}\mathrm{ln}\;r}\text{ }\text{,}\\ {\tilde{f}}_{3}=-\dfrac{1}{\tilde{R}\mathrm{ln}\;r}\text{ }\text{,}\end{array}\right. (38) 将塑性乘子 \gamma 代入到式(28),可以得到弹塑性刚度矩阵 {{\boldsymbol{C}}^{{\mathrm{ep}}}} 的显式表达式为
{{\boldsymbol{C}}^{{\mathrm{ep}}}} = {{\boldsymbol{C}}^{\mathrm{e}}} - \frac{{\left( {{{\boldsymbol{C}}^{\mathrm{e}}}:{\boldsymbol{N}}} \right) \otimes \left( {{{\tilde {\boldsymbol{f}}}_1}:{{\boldsymbol{C}}^{\mathrm{e}}}} \right)}}{{H + {{\tilde {\boldsymbol{f}}}_1}:{{\boldsymbol{C}}^{\mathrm{e}}}:{\boldsymbol{N}}}} \text{,} (39) 则CASM-SG模型的一般应力应变关系可以定义为:
\Delta {\boldsymbol{\sigma}} = {{\boldsymbol{C}}^*}:\Delta {\boldsymbol{\varepsilon}} \text{,} (40) 式中: {{\boldsymbol{C}}^*} 为弹性刚度矩阵或弹塑性刚度矩阵,可以由加卸载条件进行判定,如式(41).
{{\boldsymbol{C}}}^{*}=\left\{\begin{array}{l} {{\boldsymbol{C}}}^{{\mathrm{e}}}\text{,}\quad {\tilde{{\boldsymbol{f}}}}_{1}:{{\boldsymbol{C}}}^{{\mathrm{e}}}:\Delta {{\boldsymbol{\varepsilon}} }\leqslant 0\text{,}\\ {{\boldsymbol{C}}}^{{\mathrm{ep}}}\text{,}\quad {\tilde{{\boldsymbol{f}}}}_{1}:{{\boldsymbol{C}}}^{{\mathrm{e}}}:\Delta{{\boldsymbol{\varepsilon}} } > 0. \end{array}\right. (41) 2. CASM-SG模型参数
CASM-SG模型总共含有9个材料参数:\lambda 、\kappa 、M、{e_\Gamma }、\mu 、r、n、u、{d_0}. 其中,前8个参数与原始CASM-S模型中的材料参数一致. 这些材料参数可以通过简单的室内实验确定[18, 28, 35]. 相比于CASM-S模型,CASM-SG模型仅增加了一个材料参数{d_0},{d_0}控制模型的体变演化速率,可以通过拟合土体在排水条件下的体积变化标定.
3. 模型验证
为验证CASM-SG模型的准确性,本文使用CASM-SG模型对不排水TC和TE条件下松散Hostun砂土以及排水TC和TE条件下Fujinomori黏土的力学行为进行预测. 用于模拟的材料参数如表1所示.
图4和图5分别为松散Hostun砂土在不排水TC和TE条件下有效应力路径和应力-应变曲线的观测值和模拟值对比,图中:{\sigma _{\mathrm{a}}}和{\sigma _{\mathrm{r}}}分别为轴向和径向压力,{\varepsilon _{\mathrm{a}}}为轴向应变. 这些实验观测值由Doanh等[36]测得. 这些Hostun砂土在各向同性条件下固结,初始孔隙比为{e_0} = 0.985~1.058. 初始平均应力{p_0} = 50~300 kPa. 可以看到:对于松散Hostun砂土,在加载过程中偏应力迅速达到峰值后急剧下降;对于TE条件,应变软化并逐渐趋于稳态,在这种状态下,残余强度在大范围的轴向应变下保持不变;对于TC条件,Hostun砂土先硬化再软化然后再发生一定程度的硬化. 这些力学特性均能够较好地被CASM-SG模型再现.
图6至图7对比了Fujinomori黏土在排水TC和TE条件下的实验数据和模拟结果,图中,{\varepsilon _d}为偏应变,其中实验数据由Nakai等[37]测得. 这些样本在各向同性条件下固结,其初始平均应力{p_0} = 196 kPa. 其中图6(a)和图6(b)分别为超固结度(OCR)为1的Fujinomori黏土在围压恒定和平均应力恒定TC条件下的应力-应变曲线和体变曲线. 可以看到,对于不同的加载条件,Fujinomori黏土体变程度不同,这可以很好地被CASM-SG模型预测. 图6(c)为超固结Fujinomori黏土(OCR = 2)在平均应力恒定TC条件下的应力-应变曲线和体变曲线. 可以看到,相比于正常固结状态,超固结Fujinomori黏土更快达到临界状态并具有更小的体变,这一点能够被CASM-SG准确模拟. 图6(d)展示了OCR = 4时Fujinomori黏土的力学特征,可见在此固结度下该黏土发生应变软化和轻微的体积剪胀,这可以很好地被模型模拟. 图7展示了正常固结Fujinomori黏土在平均应力恒定TE条件下的力学特性,其中实线段为CASM-SG的模拟结果,虚线段为不考虑三维强度模型的模拟结果. 由图可见相比于TC条件,TE条件下的临界状态应力比明显较小. CASM-SG模型合理地解释了这一差异. 而不考虑三维强度模型严重高估了土体的强度.
4. 结 论
本文基于经典的砂黏统一本构CASM模型,结合次加载面理论和变换应力法,提出一种广义应力空间中的砂黏土统一本构模型,该模型被命名为CASM-SG模型. 其中,CASM-SG模型屈服面内的弹塑性变形行为通过引入次加载面理论加以考虑. 在引入次加载面概念后,CASM-SG模型能够对应变软化行为作出更为准确地预测. 在此基础上,通过结合变换应力法,CASM-SG模型被拓展到广义应力空间中,进而有望考虑应力洛德角对材料强度和变形等力学特性的影响. 随后,使用CASM-SG模型对一系列应力路径下砂土和黏土的力学行为进行模拟,模拟结果证明,CASM-SG模型能够较好地捕捉砂土和黏土在广义应力空间中的力学特性. 基于本文提出的CASM-SG模型,并结合有限元或有限差分等强大的非线性求解手段,有望实现对三维应力条件下不同边界条件的复杂岩土工程实际问题的数值分析计算,评估岩土工程中的固结,沉降等问题. 对岩土工程的设计、施工,维护提供一定的理论参考.
-
图 1 状态参数,参考状态参数在e-ln p空间中的示意[18]
Figure 1. State and reference state parameters in e-ln p space
-
[1] 吴杨,容浩俊,王金莲,等. 颗粒形状和中主应力对砂土力学特性耦合影响的真三轴试验研究[J]. 岩石力学与工程学报,2023,42(2): 497-507.WU Yang, RONG Haojun, WANG Jinlian, et al. A true triaxial experimental study on the coupled effect of particle shape and intermediate principal stress on the mechanical properties of sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 497-507. [2] WANG Y K, GAO Y F, LI B, et al. Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation[J]. Acta Geotechnica, 2019, 14(5): 1379-1401. doi: 10.1007/s11440-018-0735-5 [3] LI K F, LI X F, CHEN Q S, et al. Laboratory analyses of noncoaxiality and anisotropy of spherical granular media under true triaxial state[J]. International Journal of Geomechanics, 2023, 23(9): 04023150.1-04023150.13. [4] YUAN R, YU H S, YANG D S, et al. On a fabric evolution law incorporating the effects of b-value[J]. Computers and Geotechnics, 2019, 105: 142-154. doi: 10.1016/j.compgeo.2018.09.019 [5] 袁冉,杨文波,余海岁,等. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报,2018,40(4): 673-680.YUAN Ran, YANG Wenbo, YU Haisui, et al. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. [6] YUAN R, YU H S, ZHANG J R, et al. Noncoaxial theory of plasticity incorporating initial soil anisotropy [J]. International Journal of Geomechanics, 2019, 19(12): 06019017.1-06019017.10. [6] YUAN R, YU H S, ZHANG J R, et al. Noncoaxial theory of plasticity incorporating initial soil anisotropy[J]. International Journal of Geomechanics, 2019, 19(12) : 06019017.1-06019017.10. [7] YUAN R, YU H S, HU N, et al. Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems[J]. Computers and Geotechnics, 2018, 99: 80-92. doi: 10.1016/j.compgeo.2018.02.022 [8] Roscoe K H, Schofield A N, Wroth C P. On the yielding of soils[J]. Geotechnique, 1958, 8(1): 22-53. doi: 10.1680/geot.1958.8.1.22 [9] Roscoe K H, Burland J B. On the generalised stress-strain behaviour of ‘wet’ clay[M]. Cambridge: Cambridge University Press, 1968. [10] 田雨. 基于各向异性变换应力法的UH模型及其应用[D]. 北京:北京航空航天大学,2018. [11] 姚仰平,张奎,王祖乐,等. UH模型超固结状态演化分析及离心模型试验验证[J]. 岩土工程学报,2024,46(6): 1127-1135.YAO Yangping, ZHANG Kui, WANG Zule, et al. Evolution analysis of over-consolidated state with UH model and verification of hypergravity centrifuge experiments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1127-1135. [12] 姚仰平,田易川,崔文杰. 理想膨胀性非饱和土UH模型[J]. 岩土工程学报,2023,45(6): 1103-1112.YAO Yangping, TIAN Yichuan, CUI Wenjie. UH model for ideal expansive unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1103-1112. [13] PETALAS A L, DAFALIAS Y F, PAPADIMITRIOU A G. SANISAND-F: Sand constitutive model with evolving fabric anisotropy[J]. International Journal of Solids and Structures, 2020, 188: 12-31. [14] 曹威. 定轴剪切条件下各向异性砂土本构规律与模型研究[D]. 北京:清华大学,2018. [15] 王睿,张建民,王刚. 砂土液化大变形本构模型的三维化及其数值实现[J]. 地震工程学报,2013,35(1): 91-97.WANG Rui, ZHANG Jianmin, WANG Gang. Multiaxial formulation and numerical implementation of a constitutive model for the evaluation of large liquefaction-induced deformation[J]. China Earthquake Engineering Journal, 2013, 35(1): 91-97. [16] 邹佑学,王睿,张建民. 砂土液化大变形模型在FLAC3D中的开发与应用[J]. 岩土力学,2018,39(4): 1525-1534.ZOU Youxue, WANG Rui, ZHANG Jianmin. Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D[J]. Rock and Soil Mechanics, 2018, 39(4): 1525-1534. [17] YU H S. Plasticity and geotechnics [M]. New York: Springer Science & Business Media, 2007. [18] YU H S. CASM: a unified state parameter model for clay and sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 621-653. doi: 10.1002/(SICI)1096-9853(199808)22:8<621::AID-NAG937>3.0.CO;2-8 [19] MO P Q, MARSHALL A M, FANG Y. Cavity expansion–contraction-based method for tunnel–soil–pile interaction in a unified clay and sand model: drained analysis[J]. International Journal of Geomechanics, 2021, 21(5): [20] YU H S, ZHUANG P Z, MO P Q. A unified critical state model for geomaterials with an application to tunnelling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 464-480. doi: 10.1016/j.jrmge.2018.09.004 [21] KHONG C D. Development and numerical evaluation of unified critical state models [D]. Nottingham: University of Nottingham, 2004. [22] YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685 [23] MATSUOKA H, YAO Y P, SUN D A. The cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95. doi: 10.3208/sandf.39.81 [24] YAO Y P, SUN D A. Application of lade’s criterion to cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112) [25] YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024 [26] YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78. doi: 10.1002/nag.2545 [27] TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299-1311. doi: 10.1007/s11440-018-0680-3 [28] CUI K, WANG X W, YUAN R, et al. A unified critical state parameter model for sand and overconsolidated clay in the framework of subloading surface theory[J]. Canadian Geotechnical Journal, 2023, 60(10): 1461-1474. doi: 10.1139/cgj-2022-0287 [29] WANG X W, CUI K, YUAN R. Complete and semi-complete explicit algorithms of a unified critical state model for over-consolidated soils[J]. International Journal for Multiscale Computational Engineering, 2024, 22(2): 1-25. doi: 10.1615/IntJMultCompEng.2023047907 [30] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. [31] HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures, 1989, 25(8): 917-945. doi: 10.1016/0020-7683(89)90038-3 [32] HASHIGUCHI K, MASE T, YAMAKAWA Y. Elaborated subloading surface model for accurate description of cyclic mobility in granular materials[J]. Acta Geotechnica, 2022, 17(3): 699-719. doi: 10.1007/s11440-021-01203-y [33] WANG X W, YUAN R, CUI K. Modified unified critical state model for soils considering over-consolidation and cyclic loading behaviours[J]. Scientific Reports, 2023, 13(1): 3024.1-3024.14. [34] CUI K, WANG X W, YUAN R. Unified modeling for clay and sand with a hybrid-driven fabric evolution law[J]. Applied Mathematical Modelling, 2024, 129: 522-544. doi: 10.1016/j.apm.2024.02.015 [35] RIOS S, CIANTIA M, GONZALEZ N, et al. Simplifying calibration of bonded elasto-plastic models[J]. Computers and Geotechnics, 2016, 73: 100-108. doi: 10.1016/j.compgeo.2015.11.019 [36] DOANH T, IBRAIM E, MATIOTTI R. Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations[J]. Mechanics of Cohesive-Frictional Materials, 2(1): 47-70. [37] NAKAI T, HINOKIO M. A simple elastoplastic model for normally and over consolidated soils with unified material parameters[J]. Soils and Foundations, 2004, 44(2): 53-70. doi: 10.3208/sandf.44.2_53 -