• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

山区铁路“路基-环境”的耦合优化调控

鲍学英 沈杜华 李亚娟 贺振霞 张程皓 陈慧鑫

鲍学英, 沈杜华, 李亚娟, 贺振霞, 张程皓, 陈慧鑫. 山区铁路“路基-环境”的耦合优化调控[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230340
引用本文: 鲍学英, 沈杜华, 李亚娟, 贺振霞, 张程皓, 陈慧鑫. 山区铁路“路基-环境”的耦合优化调控[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230340
BAO Xueying, SHEN Duhua, LI Yajuan, HE Zhenxia, ZHANG Chenghao, CHEN Huixin. Coupling Optimization and Regulation of Roadbed and Environment in Mountainous Railways[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230340
Citation: BAO Xueying, SHEN Duhua, LI Yajuan, HE Zhenxia, ZHANG Chenghao, CHEN Huixin. Coupling Optimization and Regulation of Roadbed and Environment in Mountainous Railways[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230340

山区铁路“路基-环境”的耦合优化调控

doi: 10.3969/j.issn.0258-2724.20230340
基金项目: 国家自然科学基金资助项目(51768034);中央引导地方科技发展资金项目(22ZY1QA005)
详细信息
    通讯作者:

    鲍学英(1974—),女,宁夏中卫人,教授,博士,从事绿色铁路及工程管理方面的研究;E-mail:813257032@qq.com

  • 中图分类号: U215

Coupling Optimization and Regulation of Roadbed and Environment in Mountainous Railways

  • 摘要:

    为实现山区铁路“路基-环境”高质量协调发展,提出一种“路基-环境”耦合优化调控方法. 首先,对于铁路“路基-环境”相容共生进行定义,构建绿色要素指标体系,并结合耦合魔方游戏模型明晰耦合调控框架;其次,利用耦合协调度模型、施压承载模型及各关键要素间的函数关系共同构建“路基-环境”调控优化目标函数及约束条件,将路基工程绿色关键要素作为主控变量,采取智能优化算法(CSA)进行求解,得到相容共生状态下的各主控变量最优解;最后,以某山区铁路路基为例进行实证分析. 结果表明:当各主控变量路堑开挖尺寸、路堤填筑尺寸、支挡结构设计、支挡结构布设、工程防护结构设计、边坡工程防护布设、植物防护结构设计、边坡植物防护布设、生态声屏障结构设计、生态声屏障布设依次分别优化36.83%,43.14%,49.93%,68.91%,69.98%,68.91%,23.42%,68.91%,19.64%,19.60%比例时,可以实现铁路“路基-环境”从初级协调状态向中级协调状态的演化,研究结果验证了构建的“路基-环境”调控优化模型的合理性以及CSA算法求最优解的有效性,为实现山区铁路路基工程绿色化建设提供了科学参考.

     

  • 图 1  铁路“路基-环境”交互影响关系

    Figure 1.  Interaction between railway roadbed and environment

    图 2  铁路“路基-环境”绿色要素指标体系

    Figure 2.  Index system for green elements of railway roadbed and environment

    图 3  魔方游戏模型

    Figure 3.  Rubik’s cube game model

    图 4  魔方游戏施压承载模型

    Figure 4.  Rubik’s cube game pressure bearing model

    图 5  变色龙群算法流程

    Figure 5.  Flow chart of CSA

    图 6  CSA、SA、SSA算法对比结果

    Figure 6.  Comparison results of CSA, SA, and SSA

    图 7  主控变量最优解优化比例

    Figure 7.  Optimization proportion of optimal solution for main control variables

    表  1  耦合协调度划分标准

    Table  1.   Classification criteria for ccoupling coordination degree

    第1分类划分标准第2分类及划分标准
    协调发展类0.9<D≤1.0优质协调
    0.8<D≤0.9良好协调
    0.7<D≤0.8中级协调
    0.6<D≤0.7初级协调
    过渡发展类0.5<D≤0.6勉强发展
    0.4<D≤0.5濒临失调
    失调衰退类0.3<D≤0.4轻度失调
    0.2<D≤0.3中度失调
    0.1<D≤0.2严重失调
    0<D≤0.1极度失调
    下载: 导出CSV
  • [1] 李艳鸽,姜楠,韩征,等. “绿色铁路设计” 核心理念的界定及应用探讨——以某西部铁路工程为例[J]. 铁道科学与工程学报,2022,19(11): 3439-3446.

    LI Yange, JIANG Nan, HAN Zheng, et al. Discussion on definition and application of the core concept of Green Railway Design―a case study of a Tibet railway project[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3439-3446.
    [2] SU L J, HU B L, XIE Q J, et al. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection[J]. Journal of Mountain Science, 2020, 17(11): 2784-2795. doi: 10.1007/s11629-020-6077-4
    [3] SUKMAK P, SUKMAK G, HORPIBULSUK S, et al. Improved mechanical properties of cement-stabilized soft clay using garnet residues and tire-derived aggregates for subgrade applications[J]. Sustainability, 2021, 13(21): 11692.1-11692.22.
    [4] 郑雨茜,鲍学英. 绿色施工下的铁路路基爆破效益分析[J]. 爆破,2019,36(1): 147-154. doi: 10.3963/j.issn.1001-487X.2019.01.022

    ZHENG Yuxi, BAO Xueying. Blasting benefits analysis of railway subgrade under green construction[J]. Blasting, 2019, 36(1): 147-154. doi: 10.3963/j.issn.1001-487X.2019.01.022
    [5] 李雨浓,鲍学英. 川藏铁路绿色施工节材措施综合效果评价研究[J]. 铁道科学与工程学报,2021,18(6): 1613-1621.

    LI Yunong, BAO Xueying. Study on comprehensive effect evaluation of material-saving measures for green construction of Sichuan-Tibet railway[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1613-1621.
    [6] 鲍学英,李亚娟,胡所亭,等. 铁路桥隧工程技术接口的关键要素均衡优化[J]. 浙江大学学报(工学版),2022,56(3): 558-568.

    BAO Xueying, LI Yajuan, HU Suoting, et al. Tradeoff optimization of key elements of technical interface of railway bridge-tunnel engineering[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 558-568.
    [7] 李伟,蒲浩,赵海峰,等. 基于分步编码改进遗传算法的铁路智能选线[J]. 西南交通大学学报,2013,48(5): 831-838. doi: 10.3969/j.issn.0258-2724.2013.05.008

    LI Wei, PU Hao, ZHAO Haifeng, et al. Intelligent railway aignment optimization based on stepwise encoding genetic algorithm[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 831-838. doi: 10.3969/j.issn.0258-2724.2013.05.008
    [8] 段晓晨,喇海霞,胡天明,等. 桥梁工程运维成本三维非线性智能控制研究[J]. 铁道工程学报,2020,37(9): 102-107. doi: 10.3969/j.issn.1006-2106.2020.09.018

    DUAN Xiaochen, LA Haixia, HU Tianming, et al. Research on the 3D nonlinear intelligent control for bridge engineering operation and maintenance cost[J]. Journal of Railway Engineering Society, 2020, 37(9): 102-107. doi: 10.3969/j.issn.1006-2106.2020.09.018
    [9] 薛新功,李伟,蒲浩. 铁路线路智能优化方法研究综述[J]. 铁道学报,2018,40(3): 6-15. doi: 10.3969/j.issn.1001-8360.2018.03.002

    XUE Xingong, LI Wei, PU Hao. Review on intelligent optimization methods for railway alignment[J]. Journal of the China Railway Society, 2018, 40(3): 6-15. doi: 10.3969/j.issn.1001-8360.2018.03.002
    [10] 肖建庄,夏冰,肖绪文. 工程结构可持续性设计理论架构[J]. 土木工程学报,2020,53(6): 1-12.

    XIAO Jianzhuang, XIA Bing, XIAO Xuwen. Theoretical framework for sustainability design of engineering structures[J]. China Civil Engineering Journal, 2020, 53(6): 1-12.
    [11] 王思源,赵敏敏,闫晶,等. 川藏铁路西藏昌都段生态保护重要性评价[J]. 现代地质,2021,35(1): 234-243.

    WANG Siyuan, ZHAO Minmin, YAN Jing, et al. Evaluation on the importance of ecological protection in Changdu section of the Sichuan-Tibet railway[J]. Geoscience, 2021, 35(1): 234-243.
    [12] 彭建兵,崔鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12): 2377-2389.

    PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan: Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2377-2389.
    [13] 蔡迪文,张克存,安志山,等. 青藏铁路格拉段风动力环境及其对铁路沙害的影响[J]. 中国沙漠,2017,37(1): 40-47. doi: 10.7522/j.issn.1000-694X.2015.00272

    CAI Diwen, ZHANG Kecun, AN Zhishan, et al. Wind energy environments and its impacts on railway sand hazards along gerlha section of the Qinghai-Tibet railway[J]. Journal of Desert Research, 2017, 37(1): 40-47. doi: 10.7522/j.issn.1000-694X.2015.00272
    [14] 国家铁路局. 铁路路基设计规范:TB 10001—2016[S]. 北京:中国铁道出版社,2017.
    [15] 国家铁路局. 铁路工程环境保护设计规范:TB 10501—2016[S]. 北京:中国铁道出版社,2016.
    [16] 刘海猛,方创琳,李咏红. 城镇化与生态环境“耦合魔方” 的基本概念及框架[J]. 地理学报,2019,74(8): 1489-1507. doi: 10.11821/dlxb201908001

    LIU Haimeng, FANG Chuanglin, LI Yonghong. The coupled human and natural cube: a conceptual framework for analyzing urbanization and eco-environment interactions[J]. Acta Geographica Sinica, 2019, 74(8): 1489-1507. doi: 10.11821/dlxb201908001
    [17] 鲍学英,沈杜华,郭海东,等. 山区铁路工程 “路基-环境” 绿色关键要素识别研究[J]. 安全与环境学报,2024,24(2): 787-795.

    BAO Xueying, SHEN Duhua, GUO Haidong, et al. Study on the identification of “subgrade-environment” green key elements in mountain railway engineering[J]. Journal of Safety and Environment, 2024, 24(2): 787-795.
    [18] 莫俊文,滕仓国,李甲,等. 基于熵权—二维云模型的高铁建设工程系统韧性评价[J]. 铁道科学与工程学报,2022,19(1): 26-33.

    MO Junwen, TENG Cangguo, LI Jia, et al. Resilience evaluation of high-speed railway construction engineering system based on entropy weight-two dimensional cloud model[J]. Journal of Railway Science and Engineering, 2022, 19(1): 26-33.
    [19] 鲍学英,肖岚月,万炳彤,等. 节材视角下山区铁路与材料资源协调发展研究[J]. 铁道科学与工程学报,2023,20(11): 4367-4376.

    BAO Xueying, XIAO Lanyue, WAN Bingtong, et al. Coordinated development of mountain railways and material resources from perspective of material saving[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4367-4376.
    [20] 任慧君. 黄河流域9省区能源产业链与资源环境耦合关系研究[D]. 北京:中国矿业大学(北京),2020.
    [21] 王恒,方兰. 中国水-能源-粮食纽带系统安全水平与全要素生产率时空耦合协调关系分析[J]. 水资源保护,2023,39(1): 150-157.

    WANG Heng, FANG Lan. Spatial-temporal coupling coordination relationship between the security level of water-energy-food nexus system and total factor productivity in China[J]. Water Resources Protection, 2023, 39(1): 150-157.
    [22] 贺振霞,鲍学英,胡所亭,等. 铁路工程多系统技术接口复合网络信息质量耦合协调分析[J]. 土木工程学报,2022,55(11): 118-130.

    HE Zhenxia, BAO Xueying, HU Suoting, et al. Coupling and coordination analysis of information quality of railway engineering multi-system technical interface composite network[J]. China Civil Engineering Journal, 2022, 55(11): 118-130.
    [23] 国家铁路局. 铁路声屏障工程设计规范:TB 10505—2019[S]. 北京:中国铁道出版社,2019.
    [24] 中华人民共和国水利部. 土壤侵蚀分类分级标准:SL 190—2007[S]. 北京:中国水利水电出版社,2008.
    [25] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 环境空气质量标准:GB 3095—2012[S]. 北京:中国环境科学出版社,2016.
    [26] 环境保护部. 声环境质量标准:GB 3096—2008[S]. 北京:中国环境科学出版社,2008.
    [27] 国家环境保护总局,国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002[S]. 北京:中国环境科学出版社,2002.
    [28] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 爆破安全规程:GB 6722—2014[S]. 北京:中国标准出版社,2015.
    [29] 刘坚,李泽华,白和强,等. 露天矿爆破粉尘排放量影响因素分析及试验研究[J]. 爆破,2017,34(4): 169-174. doi: 10.3963/j.issn.1001-487X.2017.04.030

    LIU Jian, LI Zehua, BAI Heqiang, et al. Research on influence factors of blasting dust emission of open-pit mine[J]. Blasting, 2017, 34(4): 169-174. doi: 10.3963/j.issn.1001-487X.2017.04.030
    [30] 鲍学英,郑雨茜,王起才. 绿色施工下的深路堑施工群综合承载度分析[J]. 浙江大学学报(工学版),2019,53(3): 482-491.

    BAO Xueying, ZHENG Yuxi, WANG Qicai. Construction group comprehensive bearing capacity analysis of deep cutting under green construction[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(3): 482-491.
    [31] BRAIK M S. Chameleon Swarm Algorithm: a bio-inspired optimizer for solving engineering design problems[J]. Expert Systems with Applications, 2021, 174: 114685.1-114685.25.
    [32] KARYPIS G, HAN E H, KUMAR V. Chameleon: hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8): 68-75. doi: 10.1109/2.781637
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-10-11
  • 网络出版日期:  2025-02-25

目录

    /

    返回文章
    返回