• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

面向多层级目标的汽车前围声学包优化研究

黄海波 郑志伟 张思文 吴昱东 杨明亮 丁渭平

黄海波, 郑志伟, 张思文, 吴昱东, 杨明亮, 丁渭平. 面向多层级目标的汽车前围声学包优化研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20211086
引用本文: 黄海波, 郑志伟, 张思文, 吴昱东, 杨明亮, 丁渭平. 面向多层级目标的汽车前围声学包优化研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20211086
HUANG Haibo, ZHENG Zhiwei, ZHANG Siwen, WU Yudong, YANG Mingliang, DING Weiping. Optimization of Automobile Firewall Acoustic Package for Multi-level Goals[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211086
Citation: HUANG Haibo, ZHENG Zhiwei, ZHANG Siwen, WU Yudong, YANG Mingliang, DING Weiping. Optimization of Automobile Firewall Acoustic Package for Multi-level Goals[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211086

面向多层级目标的汽车前围声学包优化研究

doi: 10.3969/j.issn.0258-2724.20211086
基金项目: 国家自然科学基金(51905408)
详细信息
    作者简介:

    黄海波(1989—),男,讲师,博士,研究方向为汽车NVH现代设计理论与方法,E-mail:huanghaibo214@swjtu.edu.cn

    通讯作者:

    丁渭平(1968—),男,教授,博士,研究方向为汽车NVH现代设计理论与方法,E-mail:dwp@swjtu.edu.cn

  • 中图分类号: U462

Optimization of Automobile Firewall Acoustic Package for Multi-level Goals

  • 摘要:

    为了研究汽车声学包设计参数对其多性能目标的影响,首先,改进了传统的深度信念网络(DBNs)方法,并提出SVR-DBNs (support vector regression- deep belief networks)模型,提升了模型映射的准确度;其次,从车辆噪声传递关系与层级目标分解角度出发,提出了一种多层级目标预测与分析方法;最后,将所提方法应用于具体车型的前围声学包性能、重量与成本多目标预测与优化分析. 研究结果表明:SVR-DBNs方法对前围声学包性能、重量与成本目标预测准确度均在0.975以上,优于传统的反向传播神经网络(BPNN)、SVR与DBNs模型;基于SVR-DBNs模型的优化结果与实测结果接近,两者加权目标相对误差为1.09%(平均传递损失(MTL)、重量和成本相对误差绝对值分别为1.44%、1.04%与0.71%),优化后的实测结果较前围声学包原始状态性能、重量和成本分别提升了5.51%、9.01%与4.40%.

     

  • 图 1  前围声学包多层级目标分解架构

    Figure 1.  Multi-level goals decomposition architecture of firewall acoustic package

    图 2  DBNs拓扑结构

    Figure 2.  DBNs topology

    图 3  SVR-DBN训练流程

    Figure 3.  SVR-DBN training flowchart

    图 4  前围声学包系统及零部件测试环境

    Figure 4.  Firewall acoustic package system and parts test environment

    图 5  模型$ {f}_{1}^{\left[1\right]} $$ {f}_{3}^{\left[1\right]} $的训练与测试结果

    Figure 5.  Training and test results of model $ {f}_{1}^{\left[1\right]} $$ {f}_{3}^{\left[1\right]} $

    表  1  前围声学包系统及零部件原始状态

    Table  1.   Original state of firewall acoustic package system

    部件名称材料名称厚度/
    mm
    面积
    占比/%
    密度/
    (kg·m−3
    单价/
    (元·m−3
    前围钣金高强度钢① 1.0② 30782039100
    ③ 1.2④ 70
    外前围
    隔音垫
    玻璃纤维⑤ 10.0⑥ 201005800
    ⑦ 20.0⑧ 80
    内前围
    隔音垫
    PU 泡沫⑨ 5.0⑩ 35647200
    ⑪ 10.0 ⑫ 65
    棉毡⑬ 3.0⑭ 201134000
    ⑮ 5.0⑯ 80
    前围覆盖率⑰ 99.5%±0.1%, ±25 元
    前围泄漏量⑱ 0.20%±0.05%, ±35 元
    注:①~⑱表示构建预测模型的设计变量.
    下载: 导出CSV

    表  2  多层级分解模型在测试集上的准确度

    Table  2.   Accuracy of multi-level model on test set

    目标第一~二层级(R2第二~三层级(R2
    MTL0.9750.970、0.974、0.968
    重量0.9830.979、0.984、0.981
    成本0.9860.988、0.978、0.980
    下载: 导出CSV

    表  3  声学包多目标优化结果

    Table  3.   Multi-goals optimization results of acoustic package

    预测模型MTL重量成本
    R2MSE/dBR2MSE/kgR2MSE/元
    BPNN0.9170.7710.9241.2670.93113.457
    SVR0.9550.3640.9590.8460.9617.950
    DBNs0.9710.3410.9790.6110.9747.491
    SVR-DBNs0.9750.2960.9830.5790.9864.360
    下载: 导出CSV

    表  4  前围声学包多目标优化设计参数

    Table  4.   Multi-goals optimization design parameters of firewall acoustic package

    部件名称材料名称厚度/mm面积占比/%
    前围钣金高强度钢1.032
    1.268
    外前围隔音垫玻璃纤维14.028
    20.072
    内前围隔音垫PU 泡沫6.037
    10.063
    棉毡4.028
    5.072
    前围覆盖率/%99.6
    前围泄露量/%0.20
    下载: 导出CSV

    表  5  前围声学包多目标优化结果与实测结果

    Table  5.   Multi-goals optimization results and measured results of firewall acoustic package

    状态MTL/dB重量/kg成本/元加权目标
    原始状态45.421.4281.61.0247
    优化后预测值48.619.3267.30.9588
    实测值47.919.5269.20.9693
    下载: 导出CSV
  • [1] PANG J. Noise and vibration control in automotive bodies[M]. Chichester: John Wiley & Sons, Ltd., 2018.
    [2] 《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报,2021,34(3): 1-49. doi: 10.3969/j.issn.1001-7372.2021.03.001

    Editorial Department of China Journal of Highway and Transport. Review on China’s subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49. doi: 10.3969/j.issn.1001-7372.2021.03.001
    [3] 董俊红. 面向汽车高频噪声分析的不确定性理论与应用研究[D]. 长春: 吉林大学, 2020.
    [4] EGAB L, WANG X. On the analysis of coupling strength of a stiffened plate-cavity coupling system using a deterministic-statistical energy analysis method[J]. Mechanical Systems and Signal Processing, 2022, 164: 108234.1-108234.13.
    [5] 唐荣江,李申芳,郑伟光,等. 利用混合FE-SEA方法的前围隔声性能优化设计[J]. 应用声学,2019,38(1): 22-28.

    TANG Rongjiang, LI Shenfang, ZHENG Weiguang, et al. Optimization design of sound insulation property in front wall using hybrid FE-SEA method[J]. Journal of Applied Acoustics, 2019, 38(1): 22-28.
    [6] LEE H R, KIM H Y, JEON J H, et al. Application of global sensitivity analysis to statistical energy analysis: vehicle model development and transmission path contribution[J]. Applied Acoustics, 2019, 146: 368-389. doi: 10.1016/j.apacoust.2018.11.023
    [7] HUANG H B, HUANG X R, DING W P, et al. Uncertainty optimization of pure electric vehicle interior tire/road noise comfort based on data-driven[J]. Mechanical Systems and Signal Processing, 2022, 165: 108300.1-108300.23.
    [8] CHAUDHARI V V, RADHIKA V, VIJAY R. Frontloading approach for sound package design for noise reduction and weight optimization using statistical energy analysis[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017, 1(1): 66-72. doi: 10.4271/2017-26-0222
    [9] 周信,肖新标,何宾,等. 高速铁路声屏障插入损失影响因素及规律[J]. 西南交通大学学报,2014,49(6): 1024-1031. doi: 10.3969/j.issn.0258-2724.2014.06.014

    ZHOU Xin, XIAO Xinbiao, HE Bin, et al. Influential factors and rules for insertion loss of high-speed railway noise barriers[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 1024-1031. doi: 10.3969/j.issn.0258-2724.2014.06.014
    [10] 代浩,金铭,陈星,等. 数据驱动的应用自适应技术综述[J]. 计算机研究与发展,2022,59(11): 2549-2568.

    DAI Hao, JIN Ming, CHEN Xing, et al. Data-driven application adaptive technology: a survey[J]. Computer Research and Development, 2022, 59(11): 2549-2568.
    [11] 贺岩松,张辉,夏小均,等. 轿车车内声学包多目标优化与分析[J]. 机械科学与技术,2017,36(3): 455-461.

    HE Yansong, ZHANG Hui, XIA Xiaojun, et al. Multi-objective optimization analysis of a passenger car’s interior sound packages[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 455-461.
    [12] SCHAEFER N, BERGEN B, KEPPENS T, et al. A design space exploration framework for automotive sound packages in the mid-frequency range[C]//Noise and Vibration Conference and Exhibition. Leuven: SAE International, 2017: 1751.1-1751.11.
    [13] 孙志军,薛磊,许阳明,等. 深度学习研究综述[J]. 计算机应用研究,2012,29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002

    SUN Zhijun, XUE Lei, XU Yangming, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
    [14] MOHAMED A R, DAHL G E, HINTON G. Acoustic modeling using deep belief networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22. doi: 10.1109/TASL.2011.2109382
    [15] SRIVASTAVA N, SALAKHUTDINOV R. Learning representations for multimodal data with deep belief nets[C]//International Conference on Machine Learning Workshop.Edinburgh: [s.n.], 2012: 1-8.
    [16] 黄海波. 基于系统目标决策的汽车NVH设计理论与方法研究[D]. 成都: 西南交通大学, 2017.
    [17] ZHANG J, PANG J, ZHANG S W, et al. A lightweight dash insulator development and engineering application for the vehicle NVH improvement[C]//Noise and Vibration Conference and Exhibition. Leuven: SAE International, 2015: 2342.1-2342.5.
    [18] 姜东明,丁渭平,苏瑞强,等. 汽车前围声学包中频插入损失仿真计算[J]. 噪声与振动控制,2018,38(4): 106-110,202.

    JIANG Dongming, DING Weiping, SU Ruiqiang, et al. Simulation of insertion loss of vehicle firewall’s sound package in intermediate frequency range[J]. Noise and Vibration Control, 2018, 38(4): 106-110,202.
    [19] 潘广源,柴伟,乔俊飞. DBN网络的深度确定方法[J]. 控制与决策,2015,30(2): 256-260. doi: 10.13195/j.kzyjc.2013.1390

    PAN Guangyuan, CHAI Wei, QIAO Junfei. Calculation for depth of deep belief network[J]. Control and Decision, 2015, 30(2): 256-260. doi: 10.13195/j.kzyjc.2013.1390
    [20] 黄海波,李人宪,杨琪,等. 基于DBNs的车辆悬架减振器异响鉴别方法[J]. 西南交通大学学报,2015,50(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002

    HUANG Haibo, LI Renxian, YANG Qi, et al. Identifying abnormal noise of vehicle suspension shock absorber based on deep belief networks[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002
    [21] BENGIO Y, DELALLEAU O. Justifying and generalizing contrastive divergence[J]. Neural Computation, 2009, 21(6): 1601-1621. doi: 10.1162/neco.2008.11-07-647
    [22] LI Y, WANG N, SHI J, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109-117. doi: 10.1016/j.patcog.2018.03.005
    [23] SAE. Laboratory measurement of the airborne sound barrier performance: J1400—2017[S]. [S. l.]: SAE international, 2017.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  118
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-06-16
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回