• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

自感知功能填料在混凝土结构中的应用研究进展

许靖业 严丁辉 肖赛 洪彧 张津毓 蒲黔辉 李福海

许靖业, 严丁辉, 肖赛, 洪彧, 张津毓, 蒲黔辉, 李福海. 自感知功能填料在混凝土结构中的应用研究进展[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240087
引用本文: 许靖业, 严丁辉, 肖赛, 洪彧, 张津毓, 蒲黔辉, 李福海. 自感知功能填料在混凝土结构中的应用研究进展[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240087
XU Jingye, YAN Dinghui, XIAO Sai, HONG Yu, ZHANG Jinyu, PU Qianhui, LI Fuhai. Research Progress on Application of Self-Sensing Functional Fillers in Concrete Structures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240087
Citation: XU Jingye, YAN Dinghui, XIAO Sai, HONG Yu, ZHANG Jinyu, PU Qianhui, LI Fuhai. Research Progress on Application of Self-Sensing Functional Fillers in Concrete Structures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240087

自感知功能填料在混凝土结构中的应用研究进展

doi: 10.3969/j.issn.0258-2724.20240087
基金项目: 国家重点研发计划(2021YFB2600900);广西科技计划项目(桂科AA21077011);四川省自然科学基金项目(2023NSFSC0025)
详细信息
    作者简介:

    许靖业(1998—),男,博士研究生,研究方向为桥梁健康监测和土木工程材料,E-mail:xujingye1998@126.com

    通讯作者:

    李福海(1979—),男,教授级高工,博士,研究方向为土木工程材料,E-mail:lifuhai2007@home.swjtu.edu.cn

  • 中图分类号: U444

Research Progress on Application of Self-Sensing Functional Fillers in Concrete Structures

  • 摘要:

    用于健康监测的自感知混凝土材料是结构工程领域的新兴研究热点,但其工程应用和产业化进程还面临着一些挑战. 为进一步促进自感知混凝土在结构健康监测领域的推广和应用,介绍不同导电功能填料的掺量比例、形状特征、二次改性及与其他种类填料混杂等因素对自感知混凝土性能影响的研究,并回顾自感知混凝土功能填料的重要和阶段性成果. 结果表明:自感知功能填料的测试与标定规范尚需完善,不同的测试设备和方法会对检测结果产生明显影响,无法保证结果的可比性;有关自感知功能填料的环境适应性评估较为缺乏,复杂环境条件(温度、湿度、腐蚀等)对材料耐久性和使用寿命的影响很大,材料在实际运营下的长期稳定性欠缺研究;批量生产过程中的品质控制未得到重视:大规模生产的原材料和工艺差异会严重影响产品性能的一致性;实际工程应用案例较少,开展多参数实时监测与多功能耦合的智能自感知混凝土在大型桥梁、隧道等结构中的运营试验,能进一步补充自感知混凝土的相关数据,具有良好的研究前景.

     

  • 图 1  结构健康监测系统的不同阶段

    Figure 1.  Different stages of structural health monitoring system

    图 2  CFRP筋电阻变化率-拉应变曲线[15]

    Figure 2.  Electrical resistance change–tensile strain curves of CFRP bars [15]

    图 3  不具有/具有SL的NCB水泥基复合材料的应力传感性能[25]

    Figure 3.  Stress sensing performances of NCB cement-based composites without/with SL[25]

    图 4  压阻率测量装置[31]

    Figure 4.  Piezoresistivity measurement device [31]

    图 5  CFCA砂浆与石墨砂浆强度和电阻率对比[42]

    Figure 5.  Comparison of strength and resistivity of CFCA mortar and graphite mortar [42]

    图 6  相对含水量和环境绝对温度对石墨烯水泥基复合材料电阻率的影响[48]

    Figure 6.  Influences of relative water content and environmental absolute temperature on resistivity of graphene cement-based composites [48]

    图 7  不锈钢SFS和CCSFs超高性能混凝土在单调压缩载荷下的传感机理[58]

    Figure 7.  Sensing mechanisms of UHPC with stainless SFS and CCSFs under monotonic compressive load [58]

    图 8  化学气相沉积法(CVD)制备CF-CNTs过程[86]

    Figure 8.  Process of CF-CNTs preparation via chemical vapor deposition (CVD) method [86]

    图 9  CNT/TiO2水泥基复合材料的导电机制示意[95]

    Figure 9.  Conduction mechanism of cement-based composites with CNT/TiO2 [95]

    图 10  不同形态废弃碳纤维的回收[102]

    Figure 10.  Recycling of different forms of waste carbon fiber [102]

  • [1] 李惠,欧进萍. 智能混凝土与结构[J]. 工程力学,2007,24(增2): 45-61.

    LI Hui, OU Jinping. Smart concrete and structures[J]. Engineering Mechanics, 2007, 24(S2): 45-61.
    [2] 欧进萍. 重大工程结构的累积损伤与安全度评定[C]//走向21世纪的中国力学—中国科协第 9 次“青年科学家论坛”报告文集. 北京:清华大学出版社,1996:179- 189.
    [3] 朱宏平,余璟,张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学,2011,28(2): 1-11,17.

    ZHU Hongping, YU Jing, ZHANG Junbing. A summary review and advantages of vibration-based damage identification methods in structural health monitoring[J]. Engineering Mechanics, 2011, 28(2): 1-11,17.
    [4] 秦权. 桥梁结构的健康监测[J]. 中国公路学报,2000,13(2): 37-42. doi: 10.3321/j.issn:1001-7372.2000.02.010

    QIN Quan. Health monitoring of long-span bridges[J]. China Journal of Highway and Transport, 2000, 13(2): 37-42. doi: 10.3321/j.issn:1001-7372.2000.02.010
    [5] BROWNJOHN J M W. Structural health monitoring of civil infrastructure[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2006, 365(1851): 589-622.
    [6] LOPEZ-HIGUERA J M, RODRIGUEZ COBO L, QUINTELA INCERA A, et al. Fiber optic sensors in structural health monitoring[J]. Journal of Lightwave Technology, 2011, 29(4): 587-608. doi: 10.1109/JLT.2011.2106479
    [7] DING S Q, DONG S F, ASHOUR A, et al. Development of sensing concrete: Principles, properties and its applications[J]. Journal of Applied Physics, 2019, 126(24): 241101.1-241101.22.
    [8] DAS S, SAHA P. A review of some advanced sensors used for health diagnosis of civil engineering structures[J]. Measurement, 2018, 129: 68-90. doi: 10.1016/j.measurement.2018.07.008
    [9] CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures, 1993, 2(1): 22-30. doi: 10.1088/0964-1726/2/1/004
    [10] 丁思齐,韩宝国,欧进萍. 本征自感知混凝土及其智能结构[J]. 工程力学,2022,39(3): 1-10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02

    DING Siqi, HAN Baoguo, OU Jinping. Intrinsic self-sensing concrete for smart structures[J]. Engineering Mechanics, 2022, 39(3): 1-10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02
    [11] REDDY P N, KAVYATEJA B V, JINDAL B B. Structural health monitoring methods, dispersion of fibers, micro and macro structural properties, sensing, and mechanical properties of self-sensing concrete—a review[J]. Structural Concrete, 2021, 22(2): 793-805. doi: 10.1002/suco.202000337
    [12] 韩宝国,丁思齐,董素芬,等. 本征自感知混凝土在高铁土建基础设施原位监测中的应用展望[J]. 中国铁路,2019(11): 68-76.

    HAN Baoguo, DING Siqi, DONG Sufen, et al. Prospects on applications of intrinsic self-sensing concrete in infrastructures in situ monitoring for high speed railway civil engineering[J]. China Railway, 2019(11): 68-76.
    [13] HAN B G, DING S Q, YU X. Intrinsic self-sensing concrete and structures: a review[J]. Measurement, 2015, 59: 110-128. doi: 10.1016/j.measurement.2014.09.048
    [14] CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures, 1993, 2(1): 22-30. doi: 10.1088/0964-1726/2/1/004
    [15] 欧进萍,王勃,张新越,等. 混凝土结构用CFRP筋的感知性能试验研究[J]. 复合材料学报,2003,20(6): 47-51. doi: 10.3321/j.issn:1000-3851.2003.06.010

    OU Jinping, WANG Bo, ZHANG Xinyue, et al. Experimental study on self-sensing properties of CFRP bars for concrete structures[J]. Acta Materiae Compositae Sinica, 2003, 20(6): 47-51. doi: 10.3321/j.issn:1000-3851.2003.06.010
    [16] 王勃,欧进萍,张新越,等. CFRP筋及其加筋混凝土梁感知性能试验与分析[J]. 哈尔滨工业大学学报,2007,39(2): 220-224. doi: 10.3321/j.issn:0367-6234.2007.02.012

    WANG Bo, OU Jinping, ZHANG Xinyue, et al. Experimental research on sensing properties of CFRP bar and concrete beams reinforced with CFRP bars[J]. Journal of Harbin Institute of Technology, 2007, 39(2): 220-224. doi: 10.3321/j.issn:0367-6234.2007.02.012
    [17] HOWSER R N, DHONDE H B, MO Y L. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading[J]. Smart Materials and Structures, 2011, 20(8): 085031.1-085031.13.
    [18] BAEZA F J, GALAO O, ZORNOZA E, et al. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites[J]. Materials & Design, 2013, 51: 1085-1094.
    [19] HAN J S, CAI J M, PAN J L, et al. Study on the conductivity of carbon fiber self-sensing high ductility cementitious composite[J]. Journal of Building Engineering, 2021, 43: 103125.1-103125.13.
    [20] XU C, FU J, SUN L M, et al. Fatigue damage self-sensing of bridge deck component with built-in giant piezoresistive Cementitious Carbon Fiber Composites[J]. Composite Structures, 2021, 276: 114459.1-114459.12.
    [21] RAN H Y, ELCHALAKANI M, BOUSSAID F, et al. Development and evaluation of conductive ultra-lightweight cementitious composites for smart and sustainable infrastructure applications[J]. Construction and Building Materials, 2023, 375: 131017.1-131017.21.
    [22] 王小英,孙明清,侯作富,等. 纳米炭黑水泥砂浆的导电性与电热特性研究[J]. 功能材料,2006,37(11): 1841-1843,1847. doi: 10.3321/j.issn:1001-9731.2006.11.047

    WANG Xiaoying, SUN Mingqing, HOU Zuofu, et al. Study on electrical and electrothermal properties of nano carbon black cement mortar[J]. Journal of Functional Materials, 2006, 37(11): 1841-1843,1847. doi: 10.3321/j.issn:1001-9731.2006.11.047
    [23] MONTEIRO A O, CACHIM P B, COSTA P M F J. Self-sensing piezoresistive cement composite loaded with carbon black particles[J]. Cement and Concrete Composites, 2017, 81: 59-65. doi: 10.1016/j.cemconcomp.2017.04.009
    [24] HUANG Y, LI H L, QIAN S Z. Self-sensing properties of engineered cementitious composites[J]. Construction and Building Materials, 2018, 174: 253-262. doi: 10.1016/j.conbuildmat.2018.04.129
    [25] DONG W K, LI W G, SHEN L M, et al. Integrated self-sensing and self-healing cementitious composite with microencapsulation of nano-carbon black and slaked lime[J]. Materials Letters, 2021, 282: 128834.1-128834.4.
    [26] 宿静. 炭黑替代碳纤维对混凝土电、热及力学性能的影响[J]. 混凝土,2018(6): 97-100. doi: 10.3969/j.issn.1002-3550.2018.06.024

    SU Jing. Effect of carbon black instead of carbon fiber on the electrical, thermal and mechanical properties of concrete[J]. Concrete, 2018(6): 97-100. doi: 10.3969/j.issn.1002-3550.2018.06.024
    [27] DONG W K, LI W G, WANG K J, et al. Piezoresistivity enhancement of functional carbon black filled cement-based sensor using polypropylene fibre[J]. Powder Technology, 2020, 373: 184-194. doi: 10.1016/j.powtec.2020.06.029
    [28] GUO Y P, LI W G, DONG W K, et al. Self-sensing performance of cement-based sensor with carbon black and polypropylene fibre subjected to different loading conditions[J]. Journal of Building Engineering, 2022, 59: 105003.1-105003.24.
    [29] 何威,李世磊,王亚伟,等. 导电炭黑Super-P对混凝土性能的影响[J]. 复合材料学报,2023,40(1): 383-395.

    HE Wei, LI Shilei, WANG Yawei, et al. Effect of conductive carbon black Super-P on concrete properties[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 383-395.
    [30] COPPOLA L, BUOSO A, CORAZZA F. Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in concrete structures[J]. Applied Mechanics and Materials, 2011, 82: 118-123. doi: 10.4028/www.scientific.net/AMM.82.118
    [31] 请核实是期刊还是会议,如果是会议请补充会议举办城市和出版社,是期刊请补充期刊的卷、期和页码

    DANOGLIDIS P A, KONSTA-GDOUTOS M S, GDOUTOS E E, et al. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars[J]. Construction and Building Materials, 2016, 120: 265-274.
    [32] 李庚英,王中坤. 碳纳米管对钢筋混凝土耐氯盐腐蚀性能的影响[J]. 华中科技大学学报(自然科学版),2018,46(3): 103-107.

    LI Gengying, WANG Zhongkun. Effect of CNTs on the corrosion performance of reinforced concrete[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(3): 103-107.
    [33] DONG W K, LI W G, SHEN L M, et al. Piezoresistivity of smart carbon nanotubes (CNTs) reinforced cementitious composite under integrated cyclic compression and impact[J]. Composite Structures, 2020, 241: 112106.1-112106.12.
    [34] YANG Q L, LIU P F, GE Z, et al. Self-sensing carbon nanotube-cement composite material for structural health monitoring of pavements[J]. Journal of Testing and Evaluation, 2020, 48(3): 1990-2002. doi: 10.1520/JTE20190170
    [35] SAFARI TARBOZAGH A, REZAIFAR O, GHOLHAKI M, et al. Magnetic enhancement of carbon nanotube concrete compressive behavior[J]. Construction and Building Materials, 2020, 262: 120772.1-120772.13.
    [36] 李振东,孙敏. 等离子体改性碳纳米管混凝土在桥墩节点处的智能监测[J]. 建筑材料学报,2022,25(6): 643-649. doi: 10.3969/j.issn.1007-9629.2022.06.014

    LI Zhendong, SUN Min. Intelligent monitoring of plasma-modified carbon nanotube concrete at bridge pier nodes[J]. Journal of Building Materials, 2022, 25(6): 643-649. doi: 10.3969/j.issn.1007-9629.2022.06.014
    [37] 吴献,李秀梅,王述红,等. 混凝土电导率与应变关系的实验研究[J]. 东北大学学报,2005,26(1): 292-295.

    WU Xian, LI Xiumei, WANG Shuhong, et al. Experimental investigation on relation between electrical conductivity and strain of concrete[J]. Journal of Northeastern University, 2005, 26(1): 292-295.
    [38] 贾治勇,白树林,赵顺增. 石墨混凝土复合材料敏感特性基础研究[J]. 功能材料,2010,41(12): 2220-2222.

    JIA Zhiyong, BAI Shulin, ZHAO Shunzeng. Foundation froperties of graphite filled cement conductive composites[J]. Journal of Functional Materials, 2010, 41(12): 2220-2222.
    [39] SAAFI M, TANG L, FUNG J, et al. Graphene/fly ash geopolymeric composites as self-sensing structural materials[J]. Smart Materials and Structures, 2014, 23(6): 065006.1-065006.11.
    [40] 蒋林华,白舒雅,金鸣,等. 石墨烯水泥基复合材料的电导率研究[J]. 哈尔滨工程大学学报,2018,39(3): 601-606.

    JIANG Linhua, BAI Shuya, JIN Ming, et al. Electrical conductivity of the graphene/cement composites[J]. Journal of Harbin Engineering University, 2018, 39(3): 601-606.
    [41] 甘伟民,黄新,陈鹏飞. 低掺量石墨水泥基材料的压敏特性[J]. 北京航空航天大学学报,2011,37(5): 556-559,578.

    GAN Weimin, HUANG Xin, CHEN Pengfei. Piezoresistivity of cement based material with small amount of graphite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 556-559,578.
    [42] 张晏清,周志福,张雄. 覆导电膜骨料水泥砂浆的制备与性能[J]. 建筑材料学报,2011,14(2): 234-237,253. doi: 10.3969/j.issn.1007-9629.2011.02.017

    ZHANG Yanqing, ZHOU Zhifu, ZHANG Xiong. Preparation and properties of conductive film coated aggregate mortar[J]. Journal of Building Materials, 2011, 14(2): 234-237,253. doi: 10.3969/j.issn.1007-9629.2011.02.017
    [43] FRĄC M, SZOŁDRA P, PICHÓR W. Smart graphite-cement composites with low percolation threshold[J]. Materials, 2022, 15(8): 2770.1-2770.18.
    [44] JIANG Z F, OZBULUT O E, HARRIS D K. Graphene nanoplatelets-based self-sensing cementitious composites[C]//ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stowe: American Society of Mechanical Engineers, 2016
    [45] PEI C, UEDA T, ZHU J H. Investigation of the effectiveness of graphene/polyvinyl alcohol on the mechanical and electrical properties of cement composites[J]. Materials and Structures, 2020, 53(3): 66.1-66.15.
    [46] LI X Y, WANG L H, LIU Y Q, et al. Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength[J]. Cement and Concrete Composites, 2018, 92: 145-154. Construction and Building Materials, 2019, 209: 665-678.
    [47] TAO J, WANG X H, WANG Z D, et al. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites[J]. Construction and Building Materials, 2019, 209: 665-678. doi: 10.1016/j.conbuildmat.2019.03.173
    [48] 赵昕,黄存旺,傅佳丽,等. 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报,2022,25(1): 8-15. doi: 10.3969/j.issn.1007-9629.2022.01.002

    ZHAO Xin, HUANG Cunwang, FU Jiali, et al. Electrical properties of graphene cement based composites[J]. Journal of Building Materials, 2022, 25(1): 8-15. doi: 10.3969/j.issn.1007-9629.2022.01.002
    [49] DONG W K, LI W G, VESSALAS K, et al. Piezoresistivity deterioration of smart graphene nanoplate/cement-based sensors subjected to sulphuric acid attack[J]. Composites Communications, 2021, 23: 100563.1-100563.13.
    [50] DONG W K, LI W G, ZHU X Q, et al. Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring[J]. Cement and Concrete Composites, 2021, 118: 103962.1-103962.14.
    [51] DONG W K, LI W G, SUN Z H, et al. Intrinsic graphene/cement-based sensors with piezoresistivity and superhydrophobicity capacities for smart concrete infrastructure[J]. Automation in Construction, 2022, 133: 103983.1-103983.11.
    [52] QURESHI T, OOTIM S. Multifunctional concrete with graphene-based nanomaterials and superabsorbent polymer[J]. Journal of Materials in Civil Engineering, 2023, 35(4): 04023046.1-04023046.12.
    [53] BANTHIA N, DJERIDANE S, PIGEON M. Electrical resistivity of carbon and steel micro-fiber reinforced cements[J]. Cement and Concrete Research, 1992, 22(5): 804-814. doi: 10.1016/0008-8846(92)90104-4
    [54] 魏小胜,肖莲珍,李宗津,等. 钢纤维水泥基材料的导电机理和水化特性[J]. 混凝土,2006(4): 11-13,51. doi: 10.3969/j.issn.1002-3550.2006.04.004

    WEI Xiaosheng, XIAO Lianzhen, LI Zongjin, et al. Conductive mechanism and hydration property of cement-based materials with steel fibers[J]. Concrete, 2006(4): 11-13,51. doi: 10.3969/j.issn.1002-3550.2006.04.004
    [55] TEOMETE E, KOCYIGIT O I. Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test[J]. Construction and Building Materials, 2013, 47: 962-968. doi: 10.1016/j.conbuildmat.2013.05.095
    [56] SUN M Q, LIEW R J Y, ZHANG M H, et al. Development of cement-based strain sensor for health monitoring of ultra high strength concrete[J]. Construction and Building Materials, 2014, 65: 630-637. doi: 10.1016/j.conbuildmat.2014.04.105
    [57] SONG J D, NGUYEN D L, MANATHAMSOMBAT C, et al. Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites[J]. Journal of Composite Materials, 2015, 49(29): 3621-3634. doi: 10.1177/0021998314568169
    [58] QIU L S, DONG S F, YU X, et al. Self-sensing ultra-high performance concrete for in situ monitoring[J]. Sensors and Actuators A: Physical, 2021, 331: 113049.1-113049.11.
    [59] WANG H, SHI F T, SHEN J L, et al. Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2021, 119: 104001.1-104001.18.
    [60] TEOMETE E. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite[J]. Smart Materials and Structures, 2016, 25(7): 075024.1-075024.11.
    [61] LE H V, KIM M K, KIM D J, et al. Electrical properties of smart ultra-high performance concrete under various temperatures, humidities, and age of concrete[J]. Cement and Concrete Composites, 2021, 118: 103979.1-03979.14.
    [62] WANG H, JIN K K, ZHANG A L, et al. External erosion of sodium chloride on the degradation of self-sensing and mechanical properties of aligned stainless steel fiber reinforced reactive powder concrete[J]. Construction and Building Materials, 2021, 287: 123028.1-123028.1.
    [63] LE H V, KIM D J. Effect of matrix cracking on electrical resistivity of high performance fiber reinforced cementitious composites in tension[J]. Construction and Building Materials, 2017, 156: 750-760. doi: 10.1016/j.conbuildmat.2017.09.046
    [64] NGUYEN D L, NGOC-TRA LAM M, KIM D J, et al. Direct tensile self-sensing and fracture energy of steel-fiber-reinforced concretes[J]. Composites Part B: Engineering, 2020, 183: 107714.1-107714.19.
    [65] DONG S F, HAN B G, OU J P, et al. Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48-65. doi: 10.1016/j.cemconcomp.2016.05.022
    [66] DONG S F, DONG X F, ASHOUR A, et al. Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2020, 105: 103427.1-103427.15.
    [67] WANG D Y, DONG S F, WANG X Y, et al. Sensing performances of hybrid steel wires and fibers reinforced ultra-high performance concrete for in situ monitoring of infrastructures[J]. Journal of Building Engineering, 2022, 58: 105022.1-105022.15.
    [68] 韩宝忠,张灵燕,韩宝国,等. 量子隧道效应压敏复合材料[J]. 功能材料,2008,39(6): 931-934. doi: 10.3321/j.issn:1001-9731.2008.06.016

    HAN Baozhong, ZHANG Lingyan, HAN Baoguo, et al. Piezoresistive composites based on quantum tunneling effect[J]. Journal of Functional Materials, 2008, 39(6): 931-934. doi: 10.3321/j.issn:1001-9731.2008.06.016
    [69] 韩宝忠,韩宝国,周道成,等. 基于场致发射和量子隧道效应的镍粉填充压敏复合材料[J]. 稀有金属材料与工程,2009,38(增1): 38-43.

    HAN Baozhong, HAN Baoguo, ZHOU Daocheng, et al. Nickel powder filled piezoresistive composites based on field emission and quantum tunneling effect[J]. Rare Metal Materials and Engineering, 2009, 38(S1): 38-43.
    [70] 喻言,韩宝国,欧进萍. 机敏水泥基材料及其无线应力/应变测量系统的研制[J]. 传感技术学报,2009,22(4): 597-601. doi: 10.3969/j.issn.1004-1699.2009.04.029

    YU Yan, HAN Baoguo, OU Jinping. Design of smart nickel powder-filled cement-based composites and their wireless measurement system[J]. Chinese Journal of Sensors and Actuators, 2009, 22(4): 597-601. doi: 10.3969/j.issn.1004-1699.2009.04.029
    [71] 王云洋,薛常喜,丁思齐,等. 埋入混凝土的自感知水泥基传感器受力分析[J]. 建筑材料学报,2015,18(4): 546-552,558. doi: 10.3969/j.issn.1007-9629.2015.04.003

    WANG Yunyang, XUE Changxi, DING Siqi, et al. Force analysis of self-sensing cement-based sensors embedded in concrete[J]. Journal of Building Materials, 2015, 18(4): 546-552,558. doi: 10.3969/j.issn.1007-9629.2015.04.003
    [72] 王云洋,薛常喜,牛建伟,等. 水泥基传感器与混凝土的应变协调性分析[J]. 哈尔滨工业大学学报,2015,47(9): 95-100. doi: 10.11918/j.issn.0367-6234.2015.09.018

    WANG Yunyang, XUE Changxi, NIU Jianwei, et al. Strain compatibility analysis on cement-based sensors and concrete[J]. Journal of Harbin Institute of Technology, 2015, 47(9): 95-100. doi: 10.11918/j.issn.0367-6234.2015.09.018
    [73] TIAN Z, LI S Q, LI Y C. Aligning conductive particles using magnetic field for enhanced piezoresistivity of cementitious composites[J]. Construction and Building Materials, 2021, 313: 125582.1-125582.13.
    [74] JIANG Y Y, XU J X, YU Z H, et al. Improving conductivity and self-sensing properties of magnetically aligned electroless nickel coated glass fiber cement[J]. Cement and Concrete Composites, 2023, 137: 104929.1-104929.12.
    [75] OH T, KIM M J, KIM S, et al. Electrical and mechanical properties of high-strength strain-hardening cementitious composites containing silvered polyethylene fibers[J]. Journal of Building Engineering, 2022, 46: 103719.1-103719.19.
    [76] LE H V, KIM M K, KIM S U, et al. Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers[J]. Journal of Building Engineering, 2021, 44: 102717.1-102717.14.
    [77] 韩宝国,关新春,欧进萍. 纳米氧化钛与碳纤维水泥石的电阻率及压敏性[J]. 硅酸盐学报,2004,32(7): 884-887. doi: 10.3321/j.issn:0454-5648.2004.07.019

    HAN Baoguo, GUAN Xinchun, OU Jinping. Specific resistance and pressure-sensitivity of cement paste admixing with nano-TiO2 and carbon fiber[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 884-887. doi: 10.3321/j.issn:0454-5648.2004.07.019
    [78] 熊国宣,邓敏,徐玲玲,等. 掺纳米TiO2的水泥基复合材料的性能[J]. 硅酸盐学报,2006,34(9): 1158-1161. doi: 10.3321/j.issn:0454-5648.2006.09.028

    XIONG Guoxuan, DENG Min, XU Lingling, et al. Properties of cement-based composites by doping nano-TiO2[J]. Journal of the Chinese Ceramic Society, 2006, 34(9): 1158-1161. doi: 10.3321/j.issn:0454-5648.2006.09.028
    [79] HEMALATHA T, SANGOJU B, MUTHURAMALINGAM G. A study on copper slag as fine aggregate in improving the electrical conductivity of cement mortar[J]. Sādhanā, 2022, 47: 141.1-141.9.
    [80] WANG L N, ASLANI F. Piezoresistivity performance of cementitious composites containing activated carbon powder, nano zinc oxide and carbon fibre[J]. Construction and Building Materials, 2021, 278: 122375.1-22375.15.
    [81] 王桂明,余剑英. 碳/钢混杂纤维水泥基复合材料的性能研究[J]. 武汉理工大学学报,2004,26(6): 5-7. doi: 10.3321/j.issn:1671-4431.2004.06.002

    WANG Guiming, YU Jianying. Electric and mechanical properties of carbon-steel mixed fiber cement-based composites[J]. Journal of Wuhan University of Technology, 2004, 26(6): 5-7. doi: 10.3321/j.issn:1671-4431.2004.06.002
    [82] KONSTA-GDOUTOS M S, AZA C A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures[J]. Cement and Concrete Composites, 2014, 53: 162-169. doi: 10.1016/j.cemconcomp.2014.07.003
    [83] 左俊卿,周虹,姚武,等. CNT-CF水泥基材料传感特性研究[J]. 材料导报,2017,31(22): 125-129. doi: 10.11896/j.issn.1005-023X.2017.022.025

    ZUO Junqing, ZHOU Hong, YAO Wu, et al. Research on the sensing properties of CNT-CF/cement-based materials[J]. Materials Reports, 2017, 31(22): 125-129. doi: 10.11896/j.issn.1005-023X.2017.022.025
    [84] ABEDI M, FANGUEIRO R, CORREIA A G. Effects of multiscale carbon-based conductive fillers on the performances of a self-sensing cementitious geocomposite[J]. Journal of Building Engineering, 2021, 43: 103171.1-103171.20.
    [85] WANG L N, ASLANI F. Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales[J]. Construction and Building Materials, 2022, 314: 125679.1-125679.15.
    [86] DING S, WANG X, QIU L, et al. Self-sensing cementitious composites with hierarchical carbon fiber-carbon nanotube composite fillers for crack development monitoring of a maglev girder[J]. Small, 2023, 19(9): e2206258.1-e2206258.16.
    [87] 洪雷,宋玉普. 石墨水泥砂浆注浆钢纤维混凝土导电性能研究[J]. 建筑材料学报,2006,9(6): 649-653. doi: 10.3969/j.issn.1007-9629.2006.06.004

    HONG Lei, SONG Yupu. Study on conductive properties of graphite slurry infiltrated fiber concrete[J]. Journal of Building Materials, 2006, 9(6): 649-653. doi: 10.3969/j.issn.1007-9629.2006.06.004
    [88] 洪雷,孙维才,黄园园. GSIFCON材料特性及对钢筋混凝土梁损伤监控试验研究[J]. 土木工程学报,2008,41(7): 7-13. doi: 10.3321/j.issn:1000-131X.2008.07.002

    HONG Lei, SUN Weicai, HUANG Yuanyuan. Experimental study on the characteristics of GSIFCON and its capacity for supervising the damages of reinforced concrete beams[J]. China Civil Engineering Journal, 2008, 41(7): 7-13. doi: 10.3321/j.issn:1000-131X.2008.07.002
    [89] 范晓明,敖芳,孙明清,等. 嵌入式碳纤维石墨水泥基复合材料的压阻特性[J]. 建筑材料学报,2011,14(1): 88-91. doi: 10.3969/j.issn.1007-9629.2011.01.018

    FAN Xiaoming, AO Fang, SUN Mingqing, et al. Piezoresistivity of carbon fiber graphite cement-based composites embedded in concrete column[J]. Journal of Building Materials, 2011, 14(1): 88-91. doi: 10.3969/j.issn.1007-9629.2011.01.018
    [90] DING Y N, LIU G J, HUSSAIN A, et al. Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending[J]. Construction and Building Materials, 2019, 207: 630-639. doi: 10.1016/j.conbuildmat.2019.02.160
    [91] HUSSAIN A, DING Y N, LIU G J, et al. Study on self-monitoring of multiple cracked concrete beams with multiphase conductive materials subjected to bending[J]. Smart Materials and Structures, 2019, 28(9): 095003.1-095003.11.
    [92] LEE S J, YOU I, KIM S, et al. Self-sensing capacity of ultra-high-performance fiber-reinforced concrete containing conductive powders in tension[J]. Cement and Concrete Composites, 2022, 125: 104331.1-104331.15.
    [93] HAN J S, PAN J L, CAI J M. Self-sensing properties and piezoresistive effect of high ductility cementitious composite[J]. Construction and Building Materials, 2022, 323: 126390.1-126390.12.
    [94] 刘金涛,黄存旺,杨杨,等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报,2022,39(1): 313-321.

    LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 313-321.
    [95] 张立卿,占小静,韩宝国,等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报,2023,40(9): 5225-5240.

    ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240.
    [96] 陈宁,王海滨,刘树信. 空心粉煤灰对铁氧体-炭黑/水泥基复合材料吸波性能的影响[J]. 复合材料学报,2017,34(6): 1381-1387.

    CHEN Ning, WANG Haibin, LIU Shuxin. Effects of hollow fly ash on microwave absorbing properties of ferritecarbon black/cement based composites[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1381-1387.
    [97] ROVNANÍK P, KUSÁK I, BAYER P, et al. Electrical and self-sensing properties of alkali-activated slag composite with graphite filler[J]. Materials, 2019, 12(10): 1616.1-1616.16.
    [98] ROVNANÍK P, KUSÁK I, BAYER P. Effect of water saturation on the electrical properties of cement and alkali-activated slag composites with graphite conductive admixture[J]. Construction and Building Materials, 2022, 361: 129699.1-129699.11.
    [99] MIZEROVÁ C, KUSÁK I, TOPOLÁř L, et al. Self-sensing properties of fly ash geopolymer doped with carbon black under compression[J]. Materials, 2021, 14(16): 4350.1-4350.11.
    [100] SEGURA I, FANECA G, TORRENTS J M, et al. Self-sensing concrete made from recycled carbon fibres[J]. Smart Materials and Structures, 2019, 28(10): 105045.1-105045.12.
    [101] BELLI A, MOBILI A, BELLEZZE T, et al. Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity[J]. Cement and Concrete Composites, 2020, 109: 103569.1-103569.14.
    [102] 王艳,高腾翔,张少辉,等. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报,2024,38(9): 23010043.1-23010043.19.

    WANG Yan, GAO tengxiang, ZHANG Shaohui, et al. Mechanical and electrical properties of recycling carbon fiber cement-based materials with different forms[J]. Materials Reports, 2024, 38(9): 23010043.1-23010043.19.
    [103] TAHERI S, GEORGAKLIS J, AMS M, et al. Smart self-sensing concrete: the use of multiscale carbon fillers[J]. Journal of Materials Science, 2022, 57(4): 2667-2682 doi: 10.1007/s10853-021-06732-1
    [104] DONG W K, GUO Y P, SUN Z H, et al. Development of piezoresistive cement-based sensor using recycled waste glass cullets coated with carbon nanotubes[J]. Journal of Cleaner Production, 2021, 314: 127968.1-127968.12.
    [105] QUAN X Y, WANG S L, LIU K N, et al. Influence of iron ore tailings by-product on the mechanical and electrical properties of carbon fiber reinforced cement-based composites[J]. Journal of Building Engineering, 2022, 45: 103567.1-103567.13.
  • 加载中
图(10)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  33
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-25
  • 录用日期:  2025-05-12
  • 修回日期:  2024-06-24
  • 网络出版日期:  2025-05-19

目录

    /

    返回文章
    返回