• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

常导高速磁浮交通道岔的平面曲线线形及参数

彭也也 宋欣悦 赵春发 冯洋 娄会彬

彭也也, 宋欣悦, 赵春发, 冯洋, 娄会彬. 常导高速磁浮交通道岔的平面曲线线形及参数[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240447
引用本文: 彭也也, 宋欣悦, 赵春发, 冯洋, 娄会彬. 常导高速磁浮交通道岔的平面曲线线形及参数[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240447
PENG Yeye, SONG Xinyue, ZHAO Chunfa, FENG Yang, LOU Huibin. Horizontal Curve Alignment and Parameters of Turnout for High-Speed Electromagnetic Suspension Maglev Transit[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240447
Citation: PENG Yeye, SONG Xinyue, ZHAO Chunfa, FENG Yang, LOU Huibin. Horizontal Curve Alignment and Parameters of Turnout for High-Speed Electromagnetic Suspension Maglev Transit[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240447

常导高速磁浮交通道岔的平面曲线线形及参数

doi: 10.3969/j.issn.0258-2724.20240447
基金项目: 国家自然科学基金项目(52402454);国家资助博士后研究人员计划 (GZB20230612);中央高校基本科研业务费专项资金(2682024CX035)
详细信息
    作者简介:

    彭也也(1992—),男,博士研究生,研究方向为磁浮车桥耦合动力学,E-mail:yeyepeng@126.com

    通讯作者:

    赵春发(1973—),男,研究员,博士,研究方向为磁浮车桥耦合动力学理论及应用研究,E-mail: cfzhao@swjtu.edu.cn

  • 中图分类号: U237

Horizontal Curve Alignment and Parameters of Turnout for High-Speed Electromagnetic Suspension Maglev Transit

  • 摘要:

    常导高速磁浮道岔是磁浮交通的薄弱环节之一,其线形参数研究对磁浮道岔优化设计具有重要意义. 为探究道岔平曲线线形及参数对道岔设计的影响,首先综合分析现有常导高速磁浮交通车线几何约束关系、列车平稳舒适运行以及道岔制造与运维经济性对道岔线形的要求;其次,探究常导高速磁浮道岔曲线线形组合及关键参数取值原则;最后,提出面向低速、较高速及高速3种通行条件的道岔平面线形. 研究表明:受车线几何约束关系限制,道岔的平面曲线半径不应小于350.00 m;单圆型道岔存在侧向加速度突变,仅适用于低速通过,缓-圆型道岔占地较大,不建议采用;缓-圆-缓型道岔可根据使用需求调整参数,适用场景广泛;缓-圆-缓型道岔设计中,道岔区长度、端部横向位移、转辙角度均随着圆曲线半径增加而减小;为满足岔后横向位移的限界要求,圆曲线半径存在一最大值;转辙角度和端部横向位移均随着圆缓比的增大而逐渐增大,圆缓比值建议在2~4之间选取.

     

  • 图 1  常导高速磁浮道岔示意(单位:m)

    Figure 1.  High-speed EMS maglev turnout (unit: m)

    图 2  圆曲线上电磁铁与轨道位置示意

    Figure 2.  Position of electromagnet and track on circular curve

    图 3  圆曲线上走行部间位置示意

    Figure 3.  Position between running gear on circular curve

    图 4  圆曲线上车体与悬浮架位置示意

    Figure 4.  Position of carbody and levitation bogie on circular curve

    图 5  线路舒适度指标与缓和曲线类型的关系

    Figure 5.  Relationship between line ride comfort index and clothoid curve type

    图 6  单圆型道岔线形(圆曲线型)

    Figure 6.  Alignment of single circular curve turnout (circular curve type)

    图 7  道岔转辙角度随半径的变化(圆曲线型)

    Figure 7.  Variation of turnout switching angle with radius (circular curve type)

    图 8  道岔横移量随终点半径的变化(缓和曲线型)

    Figure 8.  Variation of lateral displacement of turnout with terminal radius (clothoid curve type)

    图 9  缓-圆型道岔线形

    Figure 9.  Alignment of clothoid-to-circular curve turnout

    图 10  圆曲线半径对转辙角度和道岔区长度的影响

    Figure 10.  Influence of circular curve radius on switching angle and turnout zone length

    图 11  缓-圆-缓型道岔线形

    Figure 11.  Alignment of clothoid-circular-clothoid curve turnout

    图 12  圆曲线半径对转辙角度、道岔区长度和端部横移量的影响

    Figure 12.  Influence of circular curve radius on switching angle, turnout zone length, and lateral displacement at end

    图 13  不同通过速度时圆缓比对道岔参数的影响

    Figure 13.  Effect of clothoid-to-circular ratio on turnout parameters at different passing speeds

    图 14  面向低速通过的道岔侧向线形设计图

    Figure 14.  Design of lateral alignment for turnouts intended for low-speed passing

    图 15  面向较高速的道岔侧向线形设计图

    Figure 15.  Design of lateral alignment for turnouts intended for moderate-speed passing

    图 16  面向高速的道岔侧向线形设计图

    Figure 16.  Design of lateral alignment for turnouts intended for high-speed passing

    表  1  侧向设计通过速度对应最小平面曲线半径

    Table  1.   Minimum horizontal curve radius corresponding to lateral design passing speed

    侧向设计通过速度/(km•h−1 最小半径/m
    100 386.00
    200 1543.00
    300 3472.00
    400 6174.00
    下载: 导出CSV
  • [1] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2] ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210. doi: 10.1076/vesd.38.3.185.8289
    [3] 王志强,郭伟鹏,桑孜良,等. 高速磁浮列车导向系统优化控制方法研究[J/OL]. 西南交通大学学报,1-10 [2025-02-27]. http//kns.cnki.net/kcms/detail/51.1277.U.20240605.1249.002.html.

    WANG Zhiqiang, GUO Weipeng, SANG Ziliang, et al. Optimization control for the guidance system of high-speed maglev train[J/OL]. Journal of Southwest Jiaotong University, 1-10 [2025-02-27]. http://kns.cnki.net/kcms/detail/51.1277.U.20240605.1249.002.html.
    [4] 刘伟,赵春发,娄会彬,等. 基于虚拟激励法的磁浮车桥耦合系统随机振动分析[J]. 西南交通大学学报,2024,59(4): 823-831. doi: 10.3969/j.issn.0258-2724.20240035

    LIU Wei, ZHAO Chunfa, LOU Huibin, et al. Stochastic vibration analysis of maglev train-bridge coupling system based on pseudo excitation method[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 823-831. doi: 10.3969/j.issn.0258-2724.20240035
    [5] 卜秀孟,王力东,黎清蓉,等. 高速磁浮车-桥耦合振动控制参数影响分析[J]. 西南交通大学学报,2024,59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534

    BU Xiumeng, WANG Lidong, LI Qingrong, et al. Influence analysis of vibration control parameters for high-speed maglev train-bridge coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534
    [6] FENG Y, ZHAO C F, LIANG X, et al. Influence of bolster-hanger length on the dynamic performance of high-speed EMS maglev vehicles[J]. Vehicle System Dynamics, 2022, 60(11): 3743-3764. doi: 10.1080/00423114.2021.1973042
    [7] 罗英昆,赵春发,梁鑫,等. 小半径竖曲线上磁浮车辆空气弹簧动态响应分析[J]. 振动与冲击,2020,39(17): 99-105.

    LUO Yingkun, ZHAO Chunfa, LIANG Xin, et al. Dynamic responses of air-spring suspension of a maglev vehicle negotiating a small-radius vertical curved track[J]. Journal of Vibration and Shock, 2020, 39(17): 99-105.
    [8] 梁建英. 中国高速磁浮交通系统发展现状与展望[J]. 科学,2022,74(5): 31-36.

    LIANG Jianying. Development status and future prospects of the high-speed maglev transportation system in China[J]. Science, 2022, 74(5): 31-36.
    [9] 丁叁叁,付善强,梁鑫. 中国高速磁浮交通工程实践与展望[J]. 前瞻科技,2023,2(4): 40-48.

    DING Sansan, FU Shanqiang, LIANG Xin. Engineering practice and prospect of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 40-48.
    [10] 林国斌,刘万明,徐俊起,等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技,2023,2(4): 7-18.

    LIN Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
    [11] 吴祥明. 磁浮列车[M]. 上海:上海科学技术出版社,2003.
    [12] 曾国锋,韩紫平,刘鸣博,等. 电磁悬浮型高速磁浮车-岔垂向动力响应[J]. 同济大学学报(自然科学版),2023,51(3): 303-313.

    ZENG Guofeng, HAN Ziping, LIU Mingbo, et al. Vertical dynamic response of electromagnetic suspension high-speed maglev vehicle-turnout[J]. Journal of Tongji University (Natural Science), 2023, 51(3): 303-313.
    [13] 丁叁叁. 时速600公里高速磁浮交通系统[M]. 上海:上海科学技术出版社,2022.
    [14] 殷月俊,罗汉中,黄醒春. 高速磁浮道岔振动响应的原位实测[J]. 上海交通大学学报,2007,41(4): 658-663. doi: 10.3321/j.issn:1006-2467.2007.04.032

    YIN Yuejun, LUO Hanzhong, HUANG Xingchun. In situ research of dynamic response of maglev turnout[J]. Journal of Shanghai Jiao Tong University, 2007, 41(4): 658-663. doi: 10.3321/j.issn:1006-2467.2007.04.032
    [15] 肖舟. 磁浮道岔梁结构动应力及疲劳寿命分析[D]. 成都:西南交通大学,2011.
    [16] 顾行涛. 高速磁浮车辆—道岔梁耦合振动建模与仿真分析[D]. 成都:西南交通大学,2009.
    [17] 顾行涛,赵春发,翟婉明. 磁浮道岔梁自振特性及瞬态响应分析[J]. 交通运输工程与信息学报,2009,7(4): 56-62. doi: 10.3969/j.issn.1672-4747.2009.04.010

    GU Xingtao, ZHAO Chunfa, ZHAI Wanming. Natural vibration and transient response of maglev switch beam[J]. Journal of Transportation Engineering and Information, 2009, 7(4): 56-62. doi: 10.3969/j.issn.1672-4747.2009.04.010
    [18] 朱志伟. 高速磁浮线高速道岔驱动布置的研究[J]. 城市轨道交通研究,2012,15(5): 83-85. doi: 10.3969/j.issn.1007-869X.2012.05.023

    ZHU Zhiwei. Drive arrangement for high-speed switch of high-speed maglev[J]. Urban Mass Transit, 2012, 15(5): 83-85. doi: 10.3969/j.issn.1007-869X.2012.05.023
    [19] 张宏君. 高速磁浮线路道岔钢梁移位过程及其数值分析[J]. 城市轨道交通研究,2010,13(7): 32-36. doi: 10.3969/j.issn.1007-869X.2010.07.010

    ZHANG Hongjun. Shift process and numerical analysis of high speed maglev switch change[J]. Urban Mass Transit, 2010, 13(7): 32-36. doi: 10.3969/j.issn.1007-869X.2010.07.010
    [20] ZHU Z W, YE F, ZENG G F, et al. Analysis of dynamic characteristics of elastic-bending turnout for maglev transportation[C]//The 18th COTA International Conference of Transportation Professionals (CICTP). [S.l.]: American Society of Civil Engineers, 2018: 1102-1107.
    [21] 赵志苏. 摆式悬架高速磁悬浮列车转向特性研究[J]. 机车电传动,2009(1): 43-45.

    ZHAO Zhisu. Researches on turning characteristic of tilting suspension high-speed maglev trains[J]. Electric Drive for Locomotives, 2009(1): 43-45.
    [22] 易思蓉. 高速磁悬浮线路最小平曲线半径初步研究[J]. 铁道标准设计,2004,48(8): 23-26,114. doi: 10.3969/j.issn.1004-2954.2004.08.009

    YI Sirong. A preliminary study over the minimum plane curve radius for high-speed maglev[J]. Railway Standard Design, 2004, 48(8): 23-26,114. doi: 10.3969/j.issn.1004-2954.2004.08.009
    [23] 米隆,招阳,魏庆朝,等. 磁浮交通系统线路缓和曲线参数取值方法研究[J]. 北京交通大学学报,2007,31(4): 92-95,100. doi: 10.3969/j.issn.1673-0291.2007.04.023

    MI Long, ZHAO Yang, WEI Qingchao, et al. Research on alignment parameters of high-speed maglev railway transaction curve[J]. Journal of Beijing Jiaotong University, 2007, 31(4): 92-95,100. doi: 10.3969/j.issn.1673-0291.2007.04.023
    [24] 赵春发,冯洋,翟婉明. 面向列车稳定舒适运行的磁浮交通车线动力学参数匹配设计[J]. 前瞻科技,2023,2(4): 49-60.

    ZHAO Chunfa, FENG Yang, ZHAI Wanming. Matching design of train and line dynamics parameters of maglev transportation oriented toward stable and comfortable train running[J]. Science and Technology Foresight, 2023, 2(4): 49-60.
    [25] 中华人民共和国住房和城乡建设部. 高速磁浮交通设计标准:CJJ/T 310—2021[S]. 北京:中国建筑工业出版社,2021.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2025-02-27
  • 网络出版日期:  2025-05-14

目录

    /

    返回文章
    返回