• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于行人重识别的施工现场人员位置信息感知

杨彬 胡晋铭 张其林 汪丛军

杨彬, 胡晋铭, 张其林, 汪丛军. 基于行人重识别的施工现场人员位置信息感知[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230125
引用本文: 杨彬, 胡晋铭, 张其林, 汪丛军. 基于行人重识别的施工现场人员位置信息感知[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230125
YANG bin, HU Jinming, ZHANG Qilin, WANG Congjun. Location Information Perception of Onsite Construction Crew Based on Person Re-identification[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230125
Citation: YANG bin, HU Jinming, ZHANG Qilin, WANG Congjun. Location Information Perception of Onsite Construction Crew Based on Person Re-identification[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230125

基于行人重识别的施工现场人员位置信息感知

doi: 10.3969/j.issn.0258-2724.20230125
基金项目: 国家重点研发计划项目(2018YFD110090506)
详细信息
    作者简介:

    杨彬(1979—),男,副教授,博士,研究方向为智能建造 E-mail:yangbin@tongji.edu.cn

Location Information Perception of Onsite Construction Crew Based on Person Re-identification

  • 摘要:

    为结合施工场景动态性强、遮挡严重、人员衣着相似等特点,实现对施工现场人员持续的位置信息感知,提出一种基于计算机视觉的施工现场人员信息智能感知算法. 首先,利用基于深度学习的目标检测算法实现人员的初步感知;其次,以行人重识别的视角提出一种数据关联方法,通过深度特征匹配实现目标ID分配,采用基于重排序的距离度量优化相似度度量结果,再利用缓冲机制和特征动态更新机制对匹配结果进行后处理,减少施工场景难点带来的错误匹配;然后,利用图像透视变换获取与ID对应的2D坐标信息及运动信息,为生产力分析提供基础数据;最后,利用所采集的包含不同施工阶段的图像构建标准测试视频,并对方法进行测试. 研究表明:在不同场景下,算法平均IDF1(ID的F1得分)和多目标追踪准确度(multiple object tracking accuracy,MOTA)分别为85.4%和75.4%,所提出的重排序方法、匹配后处理机制有效地提升了追踪精度,相比去除这些优化机制后的算法,IDF1和MOTA平均分别提升了52.8%和3.8%.

     

  • 图 1  算法流程示意

    Figure 1.  Algorithm process

    图 2  目标检测网络目标框损失变化曲线

    Figure 2.  Target frame loss curves of target detection network

    图 3  行人重识别算法网络结构

    Figure 3.  Network structure of person re-identification algorithm

    图 4  重排序示意

    Figure 4.  Re-ranking

    图 5  匹配结果后处理方法示意

    Figure 5.  Post-processing method for matching results

    图 6  透视变换示意

    Figure 6.  Perspective transformation

    图 7  不同场景视觉追踪效果

    Figure 7.  Visual tracking results in different scenes

    图 8  完整位置信息感知效果

    Figure 8.  Result of comprehensive location information perception

    图 9  测试场景2中的错误匹配情况

    Figure 9.  Mismatch in scene 2

    表  1  标准测试视频详细信息

    Table  1.   Details of standard test videos

    编号 主要施工活动 视角 帧数/帧 目标数/个 难点
    1 混凝土浇筑 平视 1479 10136 尺寸差异、遮挡
    2 结构测设 平视 769 4606 尺寸差异、遮挡
    3 混凝土浇筑 俯视 754 9803 夜间、遮挡
    4 结构测设 俯视 616 8101 小目标、遮挡
    5 钢筋绑扎 俯视 1230 26922 小目标、遮挡
    6 混凝土浇筑 俯视 704 8427 夜间、小目标
    7 混凝土模板搭设 俯视 1131 5656 姿态改变、背景复杂
    8 预制柱吊装 俯视 1374 11220 动态性强、遮挡
    9 预制板吊装 俯视 866 4221 动态性强、遮挡
    10 脚手架搭建 俯视 497 6853 背景复杂
    11 钢筋加工 俯视 632 3265 人员离开又重进入
    下载: 导出CSV

    表  2  软硬件配置详情

    Table  2.   Software and hardware configuration

    项目 详情
    监控设备 6寸球机 型号:DS-2DC6423IW-AE
    CPU Intel(R) Core(TM) i9-10900X @3.70 GHz
    GPU NVIDIA GeForce GTX 2080 Ti
    操作系统 Ubuntu 20.04.3
    编程环境 Python 3.8.8
    深度学习框架 Pytorch 1.9.1 + cu102
    下载: 导出CSV

    表  3  不同算法在标准测试视频中的结果(IDF1/MOTA,%)

    Table  3.   Performance of different algorithms on standard test videos (IDF1/MOTA, %)

    算法 场景1 场景2 场景3 场景4 场景5 场景6 场景7 场景8 场景9 场景10 场景11
    DAN*[20] 61.5/65.8 44.2/55.4 66.8/67.8 79.2/77.9 73.1/61.5 78.9/81.3 95.3/86.4 76.7/84.2 78.6/81.3 65.5/59.0 93.5/96.2
    TraDeS[21] 43.4/27.0 32.2/21.2 8.2/5.3 10.4/-10.8 8.8/-6.8 40.3/28.8 4.2/2.6 30.2/36.2 5.4/-0.7 10.5/2.8 40.4/16.6
    FairMOT[22] 48.7/47.0 51.4/54.0 18.4/13.5 47.9/40.5 12.0/0 61.9/45 10.1/9.6 29.1/33.6 28.2/18.2 11.6/5.7 49.8/43.5
    Trackformer*[23] 61.7/55.3 49.8/44.4 29.5/23.0 58.0/54.5 37.2/22.7 68.7/58.9 40.6/24.1 36.7/52.3 32.8/30.6 37.5/38.1 83.8/95.7
    Unicorn[24] 61.4/57.5 70.5/64.0 13.2/4.6 62.6/46.9 20.1/16.4 72.5/66.3 3.2/3.4 54.6/58.7 34.3/29.2 40.4/34.2 81.7/79.9
    ByteTrack[25] 73.4/63.7 67.3/62.4 64.6/58.2 82.1/73.5 38.5/29.6 77.6/71.2 33.4/31.1 61.8/67.1 52.6/54.1 47.0/34.4 83.0/75.8
    本文算法* 78.0/66.0 73.3/57.1 82.4/67.8 87.2/77.7 78.0/63.1 89.1/81.6 97.8/95.6 91.8/84.8 90.5/81.5 73.8/58.3 97.5/96.4
      注:带*的方法使用了相同的目标检测结果,最优结果加粗表示.
    下载: 导出CSV

    表  4  不同架构下追踪结果详情(IDF1/MOTA,%)

    Table  4.   Tracking results with different architectures (IDF1/MOTA, %)

    架构 场景1 场景2 场景3 场景4 场景5 场景6 场景7 场景8 场景9 场景10 场景11
    完整 78.0/66.0 73.3/57.1 82.4/67.8 87.2/77.7 78/63.1 89.1/81.6 97.8/95.6 91.8/84.8 90.5/81.5 73.8/58.3 97.5/96.4
    无重排序 77.3/66.0 60.1/56.6 81.6/67.6 77.8/77.5 74.8/61.9 88.1/81.4 97.8/95.6 80.6/84.2 90.4/81.3 66.8/58.3 95.9/92.6
    无缓冲 76.9/66.0 56.8/55.6 79.3/68.0 81.5/77.9 76.0/61.5 87.1/81.6 97.8/95.6 91.3/84.2 89.5/81.0 72.8/59.1 96.0/96.4
    无动态更新 67.0/62.9 47.1/53.5 46.7/60.5 56.1/66.4 45.0/54.7 69.2/77.8 68.4/91.9 60.4/79.4 69.1/78.5 51.3/51.2 92.3/93.7
    仅动态更新 70.0/65.9 55.5/55.5 76.4/67.9 74.0/77.7 64.7/61.5 84.5/81.5 93.9/95.6 78.0/84.1 81.4/81.1 63.3/58.9 88.0/96.2
    仅缓冲 60.6/63.6 31.0/53.0 30.1/59.3 36.2/68.9 28.3/53.9 60.3/77.2 40.2/87.3 37.5/78.8 45.1/77.0 27.0/52.3 44.7/90.2
    仅重排序 63.0/63.9 45.0/54.6 38.8/64.4 41.5/72.6 36.8/56.6 64.0/79.9 58.3/92.4 52.8/80.3 69.5/77.8 38.3/55.8 63.2/94.0
    无优化方法 47.8/63.4 27.8/53.4 22.9/62.5 29.6/73.3 21.7/56.2 49.2/79.0 31.6/91.3 29.1/80.4 37.7/77.9 24.5/56.4 36.7/94.1
    下载: 导出CSV

    表  5  运动数据获取结果

    Table  5.   Attained movement data

    ID 移动距离/m 在场总时间/s 移动时间/s 平均速度/(m•s−1
    0 52.2 78.0 37.8 1.4
    1 12.3 78.0 9.0 1.4
    2 0.5 78.0 0.6 0.8
    3 7.0 77.8 7.0 1.0
    4 28.0 76.1 25.6 1.1
    5 17.4 33.5 16.6 1.0
    下载: 导出CSV
  • [1] PARK M W, BRILAKIS I. Continuous localization of construction workers via integration of detection and tracking[J]. Automation in Construction, 2016, 72: 129-142. doi: 10.1016/j.autcon.2016.08.039
    [2] LEE Y J, PARK M W. 3D tracking of multiple onsite workers based on stereo vision[J]. Automation in Construction, 2019, 98: 146-159. doi: 10.1016/j.autcon.2018.11.017
    [3] SON H, KIM C. Integrated worker detection and tracking for the safe operation of construction machinery[J]. Automation in Construction, 2021, 126: 103670.1-103670.11.
    [4] KONSTANTINOU E, LASENBY J, BRILAKIS I. Adaptive computer vision-based 2D tracking of workers in complex environments[J]. Automation in Construction, 2019, 103: 168-184. doi: 10.1016/j.autcon.2019.01.018
    [5] SON H, CHOI H, SEONG H, et al. Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks[J]. Automation in Construction, 2019, 99: 27-38. doi: 10.1016/j.autcon.2018.11.033
    [6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2023-02-23]. http://arxiv.org/abs/2004.10934.
    [7] ANGAH O, CHEN A Y. Tracking multiple construction workers through deep learning and the gradient based method with re-matching based on multi-object tracking accuracy[J]. Automation in Construction, 2020, 119: 103308.1-103308.9.
    [8] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
    [9] ZHANG Q L, WANG Z C, YANG B, et al. Reidentification-based automated matching for 3D localization of workers in construction sites[J]. Journal of Computing in Civil Engineering, 2021, 35(6): 04021019.1-04021019.18.
    [10] 罗浩,姜伟,范星,等. 基于深度学习的行人重识别研究进展[J]. 自动化学报,2019,45(11): 2032-2049.

    LUO H, JIANG W, FAN X, et al. A survey on deep learning based person re-identification[J]. Acta Automatica Sinica, 2019, 45(11): 2032-2049.
    [11] YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893. doi: 10.1109/TPAMI.2021.3054775
    [12] JOCHER G. YOLOv5 by Ultralytics[CP/OL]. (2020-05)[2023-02-23]. https://github.com/ultralytics/yolov5.
    [13] AN X H, ZHOU L, LIU Z G, et al. Dataset and benchmark for detecting moving objects in construction sites[J]. Automation in Construction, 2021, 122: 103482.1-103482.18.
    [14] LUO H, GU Y Z, LIAO X Y, et al. Bag of tricks and a strong baseline for deep person re-identification [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach: IEEE, 2019: 1487-1495.
    [15] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1116-1124.
    [16] JIA J R, RUAN Q Q, JIN Y, et al. View-specific subspace learning and re-ranking for semi-supervised person re-identification[J]. Pattern Recognition, 2020, 108: 107568.1-107568.12.
    [17] GARCIA J, MARTINEL N, GARDEL A, et al. Discriminant context information analysis for post-ranking person re-identification[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2017, 26(4): 1650-1665. doi: 10.1109/TIP.2017.2652725
    [18] CROUSE D F. On implementing 2D rectangular assignment algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1679-1696. doi: 10.1109/TAES.2016.140952
    [19] KIM D, LIU M Y, LEE S, et al. Remote proximity monitoring between mobile construction resources using camera-mounted UAVs[J]. Automation in Construction, 2019, 99: 168-182. doi: 10.1016/j.autcon.2018.12.014
    [20] SUN S J, AKHTAR N, SONG H S, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 104-119.
    [21] WU J L, CAO J L, SONG L C, et al. Track to detect and segment: an online multi-object tracker[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 12347-12356.
    [22] ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087. doi: 10.1007/s11263-021-01513-4
    [23] MEINHARDT T, KIRILLOV A, LEAL-TAIXÉ L, et al. TrackFormer: multi-object tracking with transformers[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 8834-8844.
    [24] YAN B, JIANG Y, SUN P Z, et al. Towards grand unification of object tracking[C]//European Conference on Computer Vision. Cham: Springer, 2022: 733-751.
    [25] ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[C]//European Conference on Computer Vision. Cham: Springer, 2022: 1-21.
    [26] 朱军,张天奕,谢亚坤,等. 顾及小目标特征的视频人流量智能统计方法[J]. 西南交通大学学报,2022,57(4): 705-712,736. doi: 10.3969/j.issn.0258-2724.20200425

    ZHU, ZHANG T Y, XIE Y K, et al. Intelligent statistic method for video pedestrian flow considering small object features[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 705-712,736. doi: 10.3969/j.issn.0258-2724.20200425
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  11
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-06-21
  • 网络出版日期:  2024-11-19

目录

    /

    返回文章
    返回