• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

围岩蠕变作用下隧道支护结构的劣化特征

蓝日彦 杨凯 邱云辉 崔耀中 乔敏杰 晏启祥

蓝日彦, 杨凯, 邱云辉, 崔耀中, 乔敏杰, 晏启祥. 围岩蠕变作用下隧道支护结构的劣化特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230442
引用本文: 蓝日彦, 杨凯, 邱云辉, 崔耀中, 乔敏杰, 晏启祥. 围岩蠕变作用下隧道支护结构的劣化特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230442
LAN Riyan, YANG Kai, QIU Yunhui, CUI Yaozhong, QIAO Minjie, YAN Qixiang. Deterioration Characteristics of Tunnel Support Structures under Surrounding Rock Creep[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230442
Citation: LAN Riyan, YANG Kai, QIU Yunhui, CUI Yaozhong, QIAO Minjie, YAN Qixiang. Deterioration Characteristics of Tunnel Support Structures under Surrounding Rock Creep[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230442

围岩蠕变作用下隧道支护结构的劣化特征

doi: 10.3969/j.issn.0258-2724.20230442
基金项目: 国家自然科学基金项目(U21A20152);2020年度交通运输行业重点科技项目(2020-MS3-083);广西科技计划项目(桂科AB20238036)
详细信息
    作者简介:

    蓝日彦(1976—),男,教授级高级工程师,博士,研究方向为岩土工程、公路建设与运营管理,Email:47573043@qq.com

    通讯作者:

    杨凯(1987—),男,讲师,博士,研究方向为隧道及地下工程,Email:87642189@qq.com

  • 中图分类号: U45

Deterioration Characteristics of Tunnel Support Structures under Surrounding Rock Creep

  • 摘要:

    为探究蠕变效应下支护结构的长期劣化特性,针对隧道支护结构体系,建立锚杆破断、钢拱架屈服和混凝土塑性损伤力学模型,采用数值算例验证支护结构劣化力学模型的有效性,并探究竖向应力、静水压力和水平应力为主条件下锚杆破断、钢拱架屈服和衬砌损伤的劣化特性. 研究表明:破断首先发生在隧道边墙中部位置的锚杆,再沿隧道环向向两侧发展;钢拱架轴力呈先加速增长、后缓慢发展、最后急速降低的特征,轴力快速降低的同时伴随着弯矩的剧烈变化,部分测点弯矩出现由负变正的特征;受压损伤破坏区主要分布在隧道边墙和墙脚位置,受拉损伤首先出现在二次衬砌边墙中部的表面;侧压力系数越大,锚杆破断、钢拱架屈服、衬砌形成的贯通受压破坏区和受拉损伤达到最大值的时间越早.

     

  • 图 1  CVISC蠕变模型

    Figure 1.  CVISC creep model

    图 2  锚杆力学模型

    Figure 2.  Mechanical model of anchor bolt

    图 3  锚杆破断力学模型验证

    Figure 3.  Verification of mechanical model for anchor bolt fracture

    图 4  钢拱架屈服力学模型验证

    Figure 4.  Verification of mechanical model of steel arch frame yielding

    图 5  混凝土塑性损伤模型及其验证

    Figure 5.  Concrete plastic damage model and its verification

    图 6  宗思隧道(单位:cm)

    Figure 6.  Zongsi Tunnel (unit: cm)

    图 7  隧道支护结构劣化特征分析数值模型

    Figure 7.  Numerical model for deterioration characteristic analysis of tunnel support structures

    图 8  锚杆轴力监测结果

    Figure 8.  Axial force monitoring results of anchor bolt

    图 9  破断锚杆空间分布

    Figure 9.  Spatial distribution of anchor bolt fracture

    图 10  锚杆破断时间

    Figure 10.  Timing of anchor bolt fracture

    图 11  钢拱架轴力监测曲线

    Figure 11.  Monitoring curves of axial force in steel arch frame

    图 12  钢拱架弯矩监测曲线

    Figure 12.  Monitoring curves of bending moment in steel arch frame

    图 13  衬砌受压损伤分布

    Figure 13.  Distribution of compressive damage in lining

    图 14  受拉损伤分布

    Figure 14.  Distribution of tensile damage

    图 15  现场实测二衬裂纹分布

    Figure 15.  Measured crack distribution of secondary lining

    表  1  锚杆物理力学参数

    Table  1.   Physical and mechanical parameters of anchor bolt

    E/GPa Ft/MPa 延伸率/% 直径d/mm
    200 335 16 22
    下载: 导出CSV

    表  2  钢拱架物理力学参数

    Table  2.   Physical and parameters of steel arch frame

    钢拱架型号 E/GPa 泊松比v Nu/kN Mu/(kN•m)
    I20a 200 0.3 849 71
    下载: 导出CSV

    表  3  混凝土力学参数

    Table  3.   Mechanical parameters of concrete

    强度
    等级
    弹性模
    E/GPa
    泊松
    ν
    内聚力c/MPa 内摩擦
    φ/(°)
    抗压强
    σc/MP
    抗拉强度σt/MPa
    C25 28.0 0.2 3.0 50 16.7 1.78
    C35 31.5 0.2 3.7 55 23.4 2.20
    下载: 导出CSV

    表  4  混凝土弹塑性损伤参数

    Table  4.   Elasto-plastic damage parameters of concrete

    C25混凝土 C35混凝土
    κs/
    ( × 10−3
    Ds κt/
    ( × 10−3
    Dt κs/
    ( × 10−3
    Ds κt/
    ( × 10−3
    Dt
    0 0 0 0 0 0 0 0
    0.06 0.01 0.42 0.55 0.07 0.01 0.45 0.55
    0.20 0.02 1.02 0.75 0.23 0.02 1.13 0.75
    0.45 0.03 3.60 0.99 0.56 0.04 3.92 0.99
    1.20 0.11 1.40 0.12
    3.00 0.40 2.90 0.39
    4.50 0.70 4.10 0.67
    7.00 0.99 6.00 0.99
    下载: 导出CSV

    表  5  围岩蠕变力学参数

    Table  5.   Creep mechanical parameters of surrounding rock

    K/
    GPa
    EM/
    GPa
    EK/
    GPa
    ηM/
    GPa.a
    ηK/
    (GPa.a)
    c/
    MPa
    φ/(°) σt/
    MPa
    2 2.5 4 3 1.2 7 26 1
    下载: 导出CSV
  • [1] 关宝树. 漫谈矿山法隧道技术第四讲:钢架[J]. 隧道建设,2016,36(2): 123-130. doi: 10.3973/j.issn.1672-741X.2016.02.001

    GUAN Baoshu. Tunneling by mining method: lecture Ⅳ: steel arch[J]. Tunnel Construction, 2016, 36(2): 123-130. doi: 10.3973/j.issn.1672-741X.2016.02.001
    [2] 李天胜,何川,方砚兵,等. 基于围岩变形失效的隧道结构可靠度设计方法[J]. 西南交通大学学报,2023,58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137

    LI Tiansheng, HE Chuan, FANG Yanbing, et al. Reliability-based design method of tunnel structures based on deformation failure of surrounding rock[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137
    [3] 潘钦锋,张丙强,黄志斌. 隧道下穿诱发既有管道-土体非协调变形解析研究[J]. 西南交通大学学报,2024,59(3): 637-645. doi: 10.3969/j.issn.0258-2724.20230334

    PAN Qinfeng, ZHANG Bingqiang, HUANG Zhibin. Analytical study for uncoordinated deformation of existing pipeline and soil induced by tunnel undercrossing[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 637-645. doi: 10.3969/j.issn.0258-2724.20230334
    [4] 中华人民共和国交通运输部. 公路隧道设计细则:JTG/T D70—2010[S]. 北京:人民交通出版社,2010.
    [5] 国家铁路局. 铁路隧道设计规范:TB 10003—2016[S]. 北京:中国铁道出版社,2017.
    [6] 周建,杨新安,蔡键,等. 深埋复合式衬砌隧道二衬分担比研究[J]. 公路交通科技,2020,37(5): 92-99.
    [7] 王耀东,朱力强,余祖俊,等. 基于样本自动标注的隧道裂缝病害智能识别[J]. 西南交通大学学报,2023,58(5): 1001-1008,1036. doi: 10.3969/j.issn.0258-2724.20210092

    WANG Yandong, ZHU Liqiang, YU Zujun, et al. Intelligent tunnel crack recognition based on automatic sample labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008,1036. doi: 10.3969/j.issn.0258-2724.20210092
    [8] 中华人民共和国交通运输部. 公路工程技术标准:JTG B01—2014[S]. 北京:人民交通出版社,2015.
    [9] 陈志豪. 锈蚀加筋喷砼拱肋支护承载性能劣化与损伤评价[D]. 长沙:长沙理工大学,2021.
    [10] 丁万涛,李术才. 锈蚀对海底隧道锚固支护结构加固性能的影响[J]. 华南理工大学学报(自然科学版),2013,41(6): 100-107,139. doi: 10.3969/j.issn.1000-565X.2013.06.016

    DING Wantao, LI Shucai. Effect of corrosion on reinforcement performance of anchorage support structure of subsea tunnel[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(6): 100-107,139. doi: 10.3969/j.issn.1000-565X.2013.06.016
    [11] 杜建明,房倩,程荔琼,等. 围岩-支护结构时效性共同作用下运营隧道服役特性[J]. 中南大学学报(自然科学版),2022,53(10): 4001-4011. doi: 10.11817/j.issn.1672-7207.2022.10.020

    DU Jianming, FANG Qian, CHENG Liqiong, et al. Service characteristics of operational tunnel under combined action of time effects of surrounding rock and supporting structure[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 4001-4011. doi: 10.11817/j.issn.1672-7207.2022.10.020
    [12] 席红兵,李柏生. 硫酸盐-冻融共同作用下隧道衬砌支护喷射混凝土劣化性能研究[J]. 隧道建设(中英文),2022,42(7): 1219-1226.

    XI Hongbing, LI Bosheng. Deterioration performance of tunnel lining support shotcrete under sulfate-freeze-thaw interaction[J]. Tunnel Construction, 2022, 42(7): 1219-1226.
    [13] 杜学才,周辉,郭鹏云,等. 香炉山引水隧洞围岩的蠕变特性及模型研究[J]. 长江科学院院报,2022,39(12): 75-81. doi: 10.11988/ckyyb.20221011

    DU Xuecai, ZHOU Hui, GUO Pengyun, et al. Creep characteristics and modelling of surrounding rock of Xianglushan water diversion tunnel[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12): 75-81. doi: 10.11988/ckyyb.20221011
    [14] 封坤,王胤丞,马文帅,等. 围岩蠕变对盾构隧道受荷特征影响研究[J]. 铁道标准设计,2022,66(8): 117-124,131.

    FENG Kun, WANG Yincheng, MA Wenshuai, et al. Influence of surrounding rock creep on loading characteristics of shield tunnel[J]. Railway Standard Design, 2022, 66(8): 117-124,131.
    [15] 经纬,陈洪恩,杨仁树,等. 基于岩石蠕变及D-P准则的深部巷道围岩弹塑性分析[J]. 力学学报,2022,54(7): 1982-1993. doi: 10.6052/0459-1879-21-619

    JING Wei, CHEN Hongen, YANG Renshu, et al. Elastoplastic analysis of surrounding rock of deep roadway based on rock creep and d-p criterion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1982-1993. doi: 10.6052/0459-1879-21-619
    [16] 路军富,肖铮,喻渝,等. 铁路隧道底鼓段围岩蠕变参数反演方法研究[J]. 铁道工程学报,2021,38(1): 66-71. doi: 10.3969/j.issn.1006-2106.2021.01.012

    LU Junfu, XIAO Zheng, YU Yu, et al. Research on the back analysis method of creep parameters of surrounding rock at floor heave section of railway tunnel[J]. Journal of Railway Engineering Society, 2021, 38(1): 66-71. doi: 10.3969/j.issn.1006-2106.2021.01.012
    [17] 张海洋,徐文杰,王永刚. 各向异性软岩隧道围岩蠕变特征及支护方案对比分析[J]. 铁道建筑,2018,58(8): 71-74. doi: 10.3969/j.issn.1003-1995.2018.08.18

    ZHANG Haiyang, XU Wenjie, WANG Yonggang. Creep characteristics of surrounding rock in anisotropic soft rock tunnel and comparative analysis of supporting schemes[J]. Railway Engineering, 2018, 58(8): 71-74. doi: 10.3969/j.issn.1003-1995.2018.08.18
    [18] YANG K, YAN Q X, SHI Z D, et al. Numerical study on the mechanical behavior of shotcrete lining with yielding support in large deformation tunnel[J]. Rock Mechanics and Rock Engineering, 2023, 56(2): 1563-1584. doi: 10.1007/s00603-022-03126-w
    [19] XU G W, GUTIERREZ M. Study on the damage evolution in secondary tunnel lining under the combined actions of corrosion degradation of preliminary support and creep deformation of surrounding rock[J]. Transportation Geotechnics, 2021, 27: 100501. doi: 10.1016/j.trgeo.2020.100501
    [20] 戴永浩,陈卫忠,于洪丹,等. 大坂膨胀性泥岩引水隧洞长期稳定性分析[J]. 岩石力学与工程学报,2010,29(增1): 3227-3234.

    DAI Yonghao, CHEN Weizhong, YU Hongdan, et al. Long-term stability analysis of daban diversion tunnel buried in swelling mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3227-3234.
    [21] 李建军,张志强. 岩石蠕变对隧道二次衬砌结构影响的研究[J]. 现代隧道技术,2011,48(6): 58-64,81. doi: 10.3969/j.issn.1009-6582.2011.06.012

    LI Jianjun, ZHANG Zhiqiang. Study of the influence of rock creep on the structure of a tunnel’s secondary lining[J]. Modern Tunnelling Technology, 2011, 48(6): 58-64,81. doi: 10.3969/j.issn.1009-6582.2011.06.012
    [22] 徐国文,何川,汪耀,等. 流变荷载作用下隧道裂损二次衬砌结构安全性能研究[J]. 土木工程学报,2016,49(12): 114-123.

    XU Guowen, HE Chuan, WANG Yao, et al. Study on the safety performance of cracked secondary lining under action of rheological load[J]. China Civil Engineering Journal, 2016, 49(12): 114-123.
    [23] 王迎超,尚岳全,孙红月,等. 复合式衬砌在围岩蠕变过程中的受力规律研究[J]. 水文地质工程地质,2010,37(2): 49-54. doi: 10.3969/j.issn.1000-3665.2010.02.011

    WANG Yingchao, SHANG Yuequan, SUN Hongyue, et al. Study on mechanical rules of double-lining in creeping surrounding rock[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 49-54. doi: 10.3969/j.issn.1000-3665.2010.02.011
    [24] 师亚龙,郑波,刘志强,等. 流变效应作用下高地应力铁路软岩隧道衬砌结构长期稳定性研究[J]. 铁道标准设计,2017,61(10): 95-99.

    SHI Yalong, ZHENG Bo, LIU Zhiqiang, et al. Study on long term stability of tunnel lining structure in high stress soft rock tunnel under the effect of rheology[J]. Railway Standard Design, 2017, 61(10): 95-99.
    [25] 钱文喜,耿大新,梁国卿. 围岩蠕变对运营隧道衬砌安全性的影响[J]. 公路交通科技,2020,37(9): 90-96. doi: 10.3969/j.issn.1002-0268.2020.09.012
    [26] 汪耀. 高地应力下围岩蠕变对隧道结构长期安全性的影响分析[D]. 成都:西南交通大学,2017.
    [27] Itasca Consulting Group Inc. Fast lagrangian analyses of continua in three-dimensions[CP/OL]. (2012-06-23)[2023-08-12]. https://www.itascacg.com/software/FLAC3D.
    [28] Hibbitt, Karlsson and Sorensen, Inc. Abaqus analysis user’s guide[CP/OL]. (2014-05-06)[2023-08-12]. https://www.3ds.com/products/simulia/abaqus.
    [29] Ansys. Mechanical 12.0 user’s guide & theory guide [CP/OL]. (2009-10-14)[2023-08-12]. https://www.ansys.com/.
    [30] 徐国文. 层状千枚岩地层隧道稳定性分析[D]. 成都:西南交通大学,2017.
    [31] 过镇海,时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社,2003.
    [32] 中华人民共和国建设部. 混凝土结构设计规范:GB 50010—2002[S]. 北京:中国建筑工业出版社,2004.
    [33] YANG K, YAN Q X, ZHANG C, et al. Study on mechanical properties and damage evolution of carbonaceous shale under triaxial compression with acoustic emission[J]. International Journal of Damage Mechanics, 2021, 30(6): 899-922. doi: 10.1177/1056789521991193
    [34] 刘新喜,李盛南,徐泽沛,等. 冻融循环作用下炭质页岩蠕变模型研究[J]. 中国公路学报,2019,32(11): 137-145.

    LIU Xinxi, LI Shengnan, XU Zepei, et al. Research on creep model of carbonaceous shale under freeze-thaw cycle[J]. China Journal of Highway and Transport, 2019, 32(11): 137-145.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2024-01-04
  • 网络出版日期:  2025-05-20

目录

    /

    返回文章
    返回