• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

永磁磁浮转向架的运动解耦与动力学响应

卢静 马卫华 李苗 罗世辉 王波 徐傲康

卢静, 马卫华, 李苗, 罗世辉, 王波, 徐傲康. 永磁磁浮转向架的运动解耦与动力学响应[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250162
引用本文: 卢静, 马卫华, 李苗, 罗世辉, 王波, 徐傲康. 永磁磁浮转向架的运动解耦与动力学响应[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250162
LU Jing, MA Weihua, LI Miao, LUO Shihui, WANG Bo, XU Aokang. Motion Decoupling and Dynamic Response of Permanent Magnet Maglev Bogie[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250162
Citation: LU Jing, MA Weihua, LI Miao, LUO Shihui, WANG Bo, XU Aokang. Motion Decoupling and Dynamic Response of Permanent Magnet Maglev Bogie[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250162

永磁磁浮转向架的运动解耦与动力学响应

doi: 10.3969/j.issn.0258-2724.20250162
基金项目: 国家重点研发计划(2023YFB4302102);国家自然科学基金项目(52332011,2025ZNSFSC0391)
详细信息
    作者简介:

    卢静(1992—),男,博士研究生,研究方向为车辆系统动力学,E-mail:lujing@my.swjtu.edu.cn

    通讯作者:

    马卫华(1977—),男,研究员,研究方向为磁浮列车悬浮架设计及常导磁浮列车动力学,E-mail: mwh@swjtu.edu.cn

  • 中图分类号: U237;TM273

Motion Decoupling and Dynamic Response of Permanent Magnet Maglev Bogie

  • 摘要:

    针对永磁磁浮“红轨”列车转向架在悬浮与导向性能上的不足,提出一种新型转向架方案并开展动力学研究. 首先,采用有限元法分析Halbach阵列磁场与磁力特性,明确永磁侧偏对导向性能及运动解耦对稳定悬浮的影响机制;其次,详细阐述新型转向架结构设计,构建车辆系统动力学模型,重点研究车辆直线运行及通过R50小半径曲线时转向架关键部件的动力学响应;最后,探究横向轮自由间隙与刚度对转向架冲击振动的影响. 研究结果表明:当横向轮自由间隙设为0,刚度值设为6 × 106 N/m时,转向架冲击振动得到有效抑制;车辆过曲线时,转向架在永磁侧偏力作用下,以横向轮紧贴曲线内侧来平衡离心力,与传统轨道车辆动力学特性明显不同;在运行速度≤60 km/h工况下,空载(AW0)状态时车辆的横向与垂向平稳性指标均优于超载(AW3)状态,且两者平稳性指标均控制在2.5以内.

     

  • 图 1  轮胎式与2种永磁磁浮转向架

    Figure 1.  Tire-type and two types of permanent magnet maglev bogies

    图 2  Halbach永磁阵列结构及有限元模型

    Figure 2.  Structure of Halbach permanent magnet array and its finite element model

    图 3  磁场强度分布

    Figure 3.  Distribution of magnetic field intensity

    图 4  悬浮力、横向力随悬浮间隙与侧偏量变化

    Figure 4.  Variation of levitation force and lateral force with levitation gap and lateral offset

    图 5  单点等比例Halbach阵列磁力测试平台

    Figure 5.  Magnetic force testing platform of single-point equal-proportion Halbach array

    图 6  单点等比例磁体磁力测试结果

    Figure 6.  Magnetic force testing results of single-point equal-proportion magnet

    图 7  车辆总体视图

    Figure 7.  General view of vehicle

    图 8  无侧偏/有侧偏时悬浮力拟合曲线

    Figure 8.  Fitting curves of levitation force without/with lateral offset

    图 9  转向架多体动力学模型

    Figure 9.  Multibody dynamics model of bogie

    图 10  转向架直线运行的动力学响应结果

    Figure 10.  Dynamic response results of bogie during straight-line operation

    图 11  不同横向轮自由间隙下直线运行动力学响应结果

    Figure 11.  Dynamic response results of bogie during straight-line operation under different free gaps of lateral wheel

    图 12  零自由间隙下具有二级刚度的横向轮模型

    Figure 12.  Lateral wheel model with secondary stiffness under zero free gap

    图 13  不同横向轮自由间隙下直线运行动力学响应结果

    Figure 13.  Dynamic response results of bogie during straight-line operation under different free gaps of lateral wheel

    图 14  通过R50曲线时车载磁体力矩平衡及横向力平衡示意

    Figure 14.  Balance of on-board magnetic force torque and lateral force when passing through R50 curve

    图 15  转向架通过R50曲线时的动力学响应结果

    Figure 15.  Dynamic response results of bogie when passing through R50 curve

    图 16  轿厢后端横向与垂向平稳性指标

    Figure 16.  Transverse and vertical ride comfort index at rear of train carriage

    表  1  轮胎式与2种永磁磁浮转向架技术对比

    Table  1.   Technical comparison among tire-type and two types of permanent magnet maglev bogies

    类型 承载 导向/抗侧滚 牵引 制动
    轮胎式 充气轮胎 横向轮与稳定轮 旋转电机 电制动与机械制动
    兴国线 永磁副 导向/稳定轮 直线电机 电制动与机械制动
    本文研究 永磁副 横向轮与姿态轮 直线电机 机械制动
    下载: 导出CSV

    表  2  钕铁硼N45 和 N52M永磁材料参数

    Table  2.   Parameters of NdFeB N45 and N52M permanent magnet materials

    牌号 矫顽力/(kA•m−1 相对磁导率 剩余磁感应强度/T
    N45 955.20 1.14 1.37
    N52M 1114.40 1.04 1.46
    下载: 导出CSV

    表  3  不同悬浮间隙下永磁磁浮系统的垂向刚度

    Table  3.   Vertical stiffness of permanent magnet maglev system with different levitation gaps

    悬浮间
    隙/mm
    单点载
    荷/kN
    响应主
    频/Hz
    悬浮刚度/
    (MN·m−1
    20.1 5.5 3.6 0.28
    16.4 6.8 3.9 0.42
    13.9 8.2 4.4 0.62
    12.0 9.6 4.6 0.83
    11.4 10.1 5.0 1.02
    8.7 13.7 5.5 1.66
    下载: 导出CSV

    表  5  AW0状态不同侧偏量下悬浮间隙、侧偏力及修正系数

    Table  5.   Levitation gap, lateral offset force, and correction coefficient under different lateral offsets in AW0 condition

    侧偏量/mm 悬浮间隙/mm 侧偏力/N 修正系数/%
    0 22.81 0 100.00
    −5 21.86 2988.4 96.15
    −10 19.60 7222.4 86.05
    −15 15.51 14201.4 70.45
    −20 8.09 27106.5 49.40
    下载: 导出CSV

    表  6  AW3状态不同侧偏量下悬浮间隙、侧偏力及修正系数

    Table  6.   Levitation gap, lateral offset force, and correction coefficient under different lateral offsets in AW3 condition

    侧偏量/mm 悬浮间隙/mm 侧偏力/N 修正系数/%
    0 16.74 0 100.00
    −5 15.78 4659.2 96.15
    −10 13.52 10564.1 86.05
    −15 9.44 19213.9 70.45
    −17 7.05 24008.7 62.67
    −18 5.63 26829.5 58.45
    −19 4.16 29848.3 54.01
    −20 2.03 33764.7 49.40
    下载: 导出CSV
  • [1] 赵川,孙凤,裴文哲,等. 永磁悬浮技术的实现机理与发展现状[J]. 机械工程学报,2023,59(17): 189-207. doi: 10.3901/JME.2023.17.189

    ZHAO Chuan, SUN Feng, PEI Wenzhe, et al. Realization mechanism and development of permanent magnetic levitation: a review[J]. Journal of Mechanical Engineering, 2023, 59(17): 189-207. doi: 10.3901/JME.2023.17.189
    [2] WU T, ZHANG W Y. Review on key development of magnetic bearings[J]. Machines, 2025, 13(2): 113. doi: 10.3390/machines13020113
    [3] DABBAGH S R, ALSEED M M, SAADAT M, et al. Biomedical applications of magnetic levitation[J]. Advanced NanoBiomed Research, 2022, 2(3): 2100103. doi: 10.1002/anbr.202100103
    [4] CHAVANNE J, LE BEC G. Prospects for the use of permanent magnets in future accelerator facilities[C]// 5th International Particle Accelerator Conference. Dresden:[s.n.], 2014: 968-973.
    [5] ZHOU F Z, YANG J, HU H L, et al. Study of repulsive permanent magnetic levitation mechanism and its dynamic characteristics[J]. Scientific Reports, 2024, 14: 29859. doi: 10.1038/s41598-024-81439-2
    [6] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [7] 马卫华,罗世辉,张敏,等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报,2021,21(1): 199-216.

    MA Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216.
    [8] BARBOSA F C. High speed intercity and urban passenger transport maglev train technology review: a technical and operational assessment[C]//2019 Joint Rail Conference. Snowbird: American Society of Mechanical Engineers, 2019: V001T08A002.
    [9] GUTFLEISCH O, WILLARD M A, BRÜCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7): 821-842. doi: 10.1002/adma.201002180
    [10] 陈春涛,吴新振,郑晓钦,等. 基于改进等效面电流法的永磁电机气隙磁场解析计算[J]. 中国电机工程学报,2021,41(增1): 315-323.

    CHEN Chuntao, WU Xinzhen, ZHENG Xiaoqin, et al. Analytical calculation of air-gap magnetic field of permanent-magnet motor based on improved equivalent surface current method[J]. Proceedings of the CSEE, 2021, 41(S1): 315-323.
    [11] 柴凯,朱石坚,杨庆超,等. 三磁体型隔振器的性能分析和实验研究[J]. 振动与冲击,2018,37(6): 36-41.

    CHAI Kai, ZHU Shijian, YANG Qingchao, et al. Analysis and test for the performances of a tri-magnet vibration isolator[J]. Journal of Vibration and Shock, 2018, 37(6): 36-41.
    [12] 叶建和,占鹏飞,曾金成,等. Halbach型磁浮列车永磁轨道的空间磁场计算模型[J]. 磁性材料及器件,2024,55(5): 6-11.

    YE Jianhe, ZHAN Pengfei, ZENG Jincheng, et al. Calculation model of space magnetic field of Halbach-type permanent magnetic guideway in maglev trains[J]. Journal of Magnetic Materials and Devices, 2024, 55(5): 6-11.
    [13] GHOSH M K, GAO Y, DOZONO H, et al. Proposal of Maxwell stress tensor for local force calculation in magnetic body[C]//2018 IEEE International Magnetics Conference (INTERMAG). Singapore: IEEE, 2018: 1-4.
    [14] TANG W B, XIAO L Y, XIA D, et al. 2-D and 3-D analytical calculation of the magnetic field and levitation force between two halbach permanent magnet arrays[J]. IEEE Transactions on Magnetics, 2021, 57(4):8300208.
    [15] MALLINSON J. One-sided fluxes: a magnetic curiosity?[J]. IEEE Transactions on Magnetics, 1973, 9(4):678-682.
    [16] HALBACH K. Design of permanent multipole magnets with oriented rare earth cobalt material[J]. Nuclear Instruments and Methods, 1980, 169(1): 1-10. doi: 10.1016/0029-554X(80)90094-4
    [17] BACHOVCHIN K D, HOBURG J F, POST R F. Magnetic fields and forces in permanent magnet levitated bearings[J]. IEEE Transactions on Magnetics, 2012, 48(7): 2112-2120. doi: 10.1109/TMAG.2012.2188140
    [18] 赵春发,刘浩东,冯洋,等. 五位姿参数下车载永磁体与永磁轨道之间的磁力特性研究[J]. 西南交通大学学报,2024,59(4): 804-811. doi: 10.3969/j.issn.0258-2724.20240049

    ZHAO Chunfa, LIU Haodong, FENG Yang, et al. Magnetic force characteristics between on-board permanent magnet and permanent magnetic rail considering five pose parameters[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 804-811. doi: 10.3969/j.issn.0258-2724.20240049
    [19] JIANG Y, DENG Y F, ZHU P H, et al. Optimization on size of halbach array permanent magnets for magnetic levitation system for permanent magnet maglev train[J]. IEEE Access, 2021, 9: 44989-45000. doi: 10.1109/ACCESS.2021.3058124
    [20] 李博涵,吴兴文,池茂儒,等. 基于Halbach阵列的永磁悬浮车辆悬浮系统磁力特性研究[J]. 机械,2024,51(10): 21-28,58. doi: 10.3969/j.issn.1006-0316.2024.10.003

    LI Bohan, WU Xingwen, CHI Maoru, et al. Magnetic force characteristics of permanent maglev vehicle levitation system based on Halbach array[J]. Machinery, 2024, 51(10): 21-28,58. doi: 10.3969/j.issn.1006-0316.2024.10.003
    [21] ROVERS J M M, JANSEN J W, LOMONOVA E A, et al. Calculation of the static forces among the permanent magnets in a halbach array[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4372-4375. doi: 10.1109/TMAG.2009.2021860
    [22] SUN R X, ZHENG J, LI H T, et al. Halbach structure parameter optimization by Maxwell tensor method for PML in manned hybrid maglev[J]. Journal of Magnetism and Magnetic Materials, 2024, 610: 172566. doi: 10.1016/j.jmmm.2024.172566
    [23] HEKMATI A, MAFI H. Impact of magnetization angles in permanent magnet guideways on high-temperature superconductors’ levitation[J]. IEEE Transactions on Magnetics, 2016, 52(9): 9000209.
    [24] ZHOU F Z, YANG J, JIA L M. Structure size optimization and magnetic circuit design of permanent magnet levitation system based on halbach array[J]. IEEE Access, 2023, 11: 113244-113254. doi: 10.1109/ACCESS.2023.3323596
    [25] 高涛,杨杰,贾利民,等. 考虑机械阻尼结构的永磁悬浮系统动态特性研究[J]. 铁道学报,2021,43(11): 61-68. doi: 10.3969/j.issn.1001-8360.2021.11.008

    GAO Tao, YANG Jie, JIA Limin, et al. Study on dynamic characteristics of permanent magnet suspension system based on mechanical damping structure[J]. Journal of the China Railway Society, 2021, 43(11): 61-68. doi: 10.3969/j.issn.1001-8360.2021.11.008
    [26] 唐文冰,肖立业,王粟,等. 磁悬浮轨道交通中的磁悬浮导向方式研究综述[J]. 电工电能新技术,2022,41(5): 45-60. doi: 10.12067/ATEEE2108022

    TANG Wenbing, XIAO Liye, WANG Su, et al. Summary of research on levitation-guidance modes in maglev rail transportation technology[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(5): 45-60. doi: 10.12067/ATEEE2108022
    [27] 陈花顺,彭月,杨杰. 稀土永磁悬浮阵列的电磁导向结构设计[J]. 稀土,2023,44(4): 214-224.

    CHEN Huashun, PENG Yue, YANG Jie. Design and feasibility analysis of electromagnetic guidance structure based on MAS array[J]. Chinese Rare Earths, 2023, 44(4): 214-224.
    [28] MUSOLINO A, RAUGI M, RIZZO R, et al. Stabilization of a permanent-magnet MAGLEV system via null-flux coils[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1242-1247. doi: 10.1109/TPS.2015.2404781
    [29] SUN F, PEI W Z, ZHAO C, et al. Permanent maglev platform using a variable flux path mechanism: stable levitation and motion control[J]. IEEE Transactions on Magnetics, 2022, 58(7): 8300410.
    [30] LONG Z Q, HE G, XUE S. Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array[J]. IEEE Transactions on Magnetics, 2011, 47(12): 4717-4724. doi: 10.1109/TMAG.2011.2159237
    [31] WU C, LI G C, WANG D, et al. Dynamic characterization of permanent magnet electrodynamic suspension system with a novel passive damping magnet scheme[J]. Journal of Sound and Vibration, 2025, 599: 118849. doi: 10.1016/j.jsv.2024.118849
    [32] 杨杰,高涛,邓永芳,等. 永磁磁浮空轨系统的研究与设计[J]. 铁道学报,2020,42(10): 30-37. doi: 10.3969/j.issn.1001-8360.2020.10.005

    YANG Jie, GAO Tao, DENG Yongfang, et al. Study and design on suspended permanent maglev rail transit system[J]. Journal of the China Railway Society, 2020, 42(10): 30-37. doi: 10.3969/j.issn.1001-8360.2020.10.005
    [33] LI Y, XU Y G, YAN H Y, et al. Suspended monorail system: a new development of an urban rail transit system with low passenger capacity[C]//ICTE 2015. Dailan:American Society of Civil Engineers. 2015: 3180-3186.
    [34] 哈尔滨工业大学理论力学教研室. 理论力学-I[M]. 8版. 北京:高等教育出版社,2016.
    [35] 中华人民共和国国家市场监督管理总局,中国国家标准化管理委员会. 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599—2019[S]. 北京:中国标准出版社,2019.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  14
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-06-12
  • 网络出版日期:  2025-06-18

目录

    /

    返回文章
    返回