• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于流固耦合分析的高墩渡槽止水地震失效分析

邓开来 张烨欣 李智渊 郝明辉 廖文彬

邓开来, 张烨欣, 李智渊, 郝明辉, 廖文彬. 基于流固耦合分析的高墩渡槽止水地震失效分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230640
引用本文: 邓开来, 张烨欣, 李智渊, 郝明辉, 廖文彬. 基于流固耦合分析的高墩渡槽止水地震失效分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230640
DENG Kailai, ZHANG Yexin, LI Zhiyuan, HAO Minghui, LIAO Wenbin. Seismic Failure Analysis of High-Pier Aqueduct Water-Stop Based on Fluid-Solid Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230640
Citation: DENG Kailai, ZHANG Yexin, LI Zhiyuan, HAO Minghui, LIAO Wenbin. Seismic Failure Analysis of High-Pier Aqueduct Water-Stop Based on Fluid-Solid Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230640

基于流固耦合分析的高墩渡槽止水地震失效分析

doi: 10.3969/j.issn.0258-2724.20230640
基金项目: 云南省重大科技专项计划(202102AF080001);四川省科技计划(2022JDRC0012,2023YFS0429)
详细信息
    作者简介:

    邓开来(1989—),男,副教授,博士,研究方向为工程抗震,E-mail:kailai_deng@163.com

    通讯作者:

    廖文彬(1974—),男,研究方向为公路工程,E-mail:aa77552023@163.com

  • 中图分类号: U442.55

Seismic Failure Analysis of High-Pier Aqueduct Water-Stop Based on Fluid-Solid Coupling

  • 摘要:

    为探究地震下大型高墩渡槽止水的性能表现,基于流固耦合方法建立渡槽结构有限元模型,模拟动力效应下渡槽-水体的非线性耦合行为,通过引入止水变形失效阈值,重现槽跨间止水的失效过程,模拟止水失效后槽内水体的外溢;依托某实际高墩渡槽结构,通过非线性动力分析得到渡槽的宏细观地震响应,包括槽墩应变、支座位移、止水损伤等,揭示不同支座类型、减隔震装置对渡槽抗震性能的影响. 研究结果表明:在罕遇地震下,槽墩、槽身不会发生显著材料损伤,地震下渡槽结构安全具有保障;但设计地震下,渡槽止水即发生失效,无法保障渡槽震后保持正常引水功能;加入钢阻尼器可有效控制槽跨的变形,保障设计地震下渡槽止水不发生破坏,但罕遇地震下止水不可避免发生破坏,强震下的槽跨变形控制依然面临着挑战.

     

  • 图 1  某典型渡槽(单位:cm)

    Figure 1.  Typical aqueduct (unit: cm)

    图 2  槽缝处止水构造

    Figure 2.  Structure of water-stop between aqueducts

    图 3  渡槽节段数值模型

    Figure 3.  Numerical model of segmental aqueduct

    图 4  材料本构模型

    Figure 4.  Constitutive model of material

    图 5  槽跨相对位移

    Figure 5.  Relative displacement of aqueduct span

    图 6  止水破坏和水体流失过程

    Figure 6.  Water-stop damage and water loss process

    图 7  止水损伤因子和EVF随时间变化规律

    Figure 7.  Variation of water-stop damage factor and EVF with time

    图 8  典型渡槽全桥模型

    Figure 8.  Full bridge model of typical aqueduct

    图 9  支座和挡块的力学模型

    Figure 9.  Mechanical model of bearing and block

    图 10  渡槽自振模态

    Figure 10.  Vibration mode of aqueduct

    图 11  地震安评报告提供的反应谱

    Figure 11.  Response spectrum by earthquake safety assessment report

    图 12  墩顶最大水平力

    Figure 12.  Maximum horizontal force at pier top

    图 13  支座最大变形

    Figure 13.  Maximum deformation of bearing

    图 14  DBE强度下止水失效模式

    Figure 14.  Failure mode of water-stop at DBE intensity

    图 15  止水失效时刻

    Figure 15.  Failure time of water-stop

    图 16  VRE强度下渡槽水体残余高度

    Figure 16.  Residual water height in aqueducts at VRE intensity

    图 17  残余水体体积比例

    Figure 17.  Ratio of residual water volume

    表  1  渡槽动力响应分析工况设施

    Table  1.   Working conditions for aqueduct dynamic response

    工况名称支座挡块阻尼器
    PRB盆式橡胶支座
    FPS-R摩擦摆支座
    FPS-D摩擦摆支座
    下载: 导出CSV

    表  2  槽墩混凝土最大应力

    Table  2.   Maximum stress of concrete in pier MPa

    工况 PRB FPS-R FPS-D
    DBE 1.31 0.31 0.95
    MCE 2.14 0.91 1.58
    VRE 2.66* 2.41 2.66*
     *注:主应力超过开裂应力,无法继续增加.
    下载: 导出CSV
  • [1] 刘长升,刘南廷,高连庆. 引大济岷工程与都江堰灌区的关系分析[J]. 四川水利,2023,44(1): 39-41,58.

    LIU Changsheng, LIU Nanting, GAO Lianqing. Analysis on the relationship between the project of diverting water from the Great River to the Min River and Dujiangyan Irrigation District[J]. Sichuan Water Resources, 2023, 44(1): 39-41,58.
    [2] 徐俊祖,张方浩,张原硕,等. 宁蒗县 1988 年 M S 5.5,2012 年 M S 5.7 及 2022 年 M S 5.5 地震震害特征对比分析[J]. 地震地磁观测与研究,2022,43(2): 170-179.

    XU Junzu, ZHANG Fanghao, ZHANG Yuanshuo, et al. Comparative analysis of earthquake damage characteristics of Ninglang MS 5.5 earthquake in 1988, MS 5.7 earthquake in 2012 and MS 5.5 earthquake in 2022[J]. Seismological and Geomagnetic Observation and Research, 2022, 43(2): 170-179.
    [3] 杨世浩,李正农,宋一乐,等. 大型渡槽支座隔震研究[J]. 振动工程学报,2009,22(2): 188-192.

    YANG Shihao, LI Zhengnong, SONG Yile, et al. Seismic isolation of large aqueduct by using seismic isolation bearing[J]. Journal of Vibration Engineering, 2009, 22(2): 188-192.
    [4] 季日臣,唐艳,夏修身,等. 大型梁式渡槽采用摩擦摆支座的减隔震研究[J]. 水力发电学报,2013,32(3): 213-217.

    JI Richen, TANG Yan, XIA Xiushen, et al. Study on seismic isolation and resistance of large beam aqueduct with friction pendulum bearings[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 213-217.
    [5] 张多新,李嘉豪,王清云,等. 基于 “设计标准” 的大型渡槽动力计算与隔减震研究[J]. 水利学报,2021,52(7): 873-883.

    ZHANG Duoxin, LI Jiahao, WANG Qingyun, et al. Research on seismic isolation and reduction of large aqueduct and its dynamic calculation based on\ “Design Standards\”[J]. Journal of Hydraulic Engineering, 2021, 52(7): 873-883.
    [6] 徐瑞祥,朱璨,尤岭,等. 高烈度地区高架渡槽自复位减隔震支座设计[J]. 人民长江,2022,53(6): 153-158.

    XU Ruixiang, ZHU Can, YOU Ling, et al. Design of bevel guide automatic reset seismic isolation bearing for elevated aqueduct in high intensity area[J]. Yangtze River, 2022, 53(6): 153-158.
    [7] 祝贺彬. 梁式渡槽的减隔震应用研究[D]. 绵阳:西南科技大学,2021.
    [8] HUANG L, HOU Y J, WANG B, et al. Collision in the expansion joint effects on the seismic behavior of large-scale aqueduct[J]. Journal of Asian Architecture and Building Engineering, 2021, 20(6): 663-673. doi: 10.1080/13467581.2020.1800478
    [9] 张多新,李嘉豪,王志强,等. 高烈度地区大型多跨渡槽间横向错动位移研究[J]. 地震工程与工程振动,2021,41(5): 144-153.

    ZHANG Duoxin, LI Jiahao, WANG Zhiqiang, et al. Research on transverse alternate displacement of large multi-span aqueduct in high seismic intensity area[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(5): 144-153.
    [10] HOUSNER G W. Dynamic pressures on accelerated fluid containers[J]. The Bulletin of the Seismological Society of America, 1957, 47(1): 15-35. doi: 10.1785/BSSA0470010015
    [11] 王海波,李春雷,朱璨,等. 大型薄壁输水渡槽流固耦合振动台试验研究[J]. 水利学报,2020,51(6): 653-663.

    WANG Haibo, LI Chunlei, ZHU Can, et al. Experimental study of dynamic interaction between large thin wall aqueduct and water[J]. Journal of Hydraulic Engineering, 2020, 51(6): 653-663.
    [12] LI Y C, DI Q S, GONG Y Q. Equivalent mechanical models of sloshing fluid in arbitrary-section aqueducts[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(6): 1069-1087.
    [13] 齐春,何川,封坤. 考虑流固耦合效应的水下盾构隧道受力特性[J]. 西南交通大学学报,2015,50(2): 306-311,330.

    QI Chun, HE Chuan, FENG Kun. Fluid-solid interaction-based mechanical characteristics of underwater shield tunnel[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 306-311,330.
    [14] 张多新,崔越越,王静,等. 大型渡槽结构动力学研究进展(2010—2019)[J]. 自然灾害学报,2020,29(4): 20-33.

    ZHANG Duoxin, CUI Yueyue, WANG Jing, et al. Research progress in structural dynamics of large scale aqueduct (2010-2019)[J]. Journal of Natural Disasters, 2020, 29(4): 20-33.
    [15] 中国水利水电科学研究院. 水工建筑物抗震设计标准:GB51247—2018[S]. 北京:中国电力出版社,2018.
    [16] HAN Q H, LI M Y, WANG Z X, et al. Strategy of scaled modeling for underwater shaking table tests on cylindrical marine structures under coupled earthquake and wave–current action: a review[J]. Earthquake Engineering and Resilience, 2023, 2(3): 263-281. doi: 10.1002/eer2.58
    [17] 梁桓玮,邓开来,张延杰,等. 地震下方形大断面渡槽水体晃动效应对比分析[J]. 世界地震工程,2023,39(4): 86-94.

    LIANG Huanwei, DENG Kailai, ZHANG Yanjie, et al. Comparative analysis of slosh effect of aqueduct with large square section under earthquake[J]. World Earthquake Engineering, 2023, 39(4): 86-94.
    [18] 中华人民共和国国家标准. 高分子防水材料第2部分:止水带:GB/T18173.2—2014[S]. 北京:中国标准出版社. 2014.
    [19] 张永亮,张跃进,王常峰. 竖向地震动对摩擦摆支座隔震桥梁地震反应的影响[J]. 兰州交通大学学报,2012,31(1): 18-22.

    ZHANG Yongliang, ZHANG Yuejin, WANG Changfeng. Effect of vertical ground motion on seismic response of an isolated bridge with FPS[J]. Journal of Lanzhou Jiaotong University, 2012, 31(1): 18-22.
    [20] LIAO M, WU B, ZENG X Z, et al. Incremental dynamic analysis of the long-span continuous beam bridge considering the fluctuating frictional force of rubber bearing[J]. Advances in Bridge Engineering, 2021, 2(1): 1-19. doi: 10.1186/s43251-020-00022-7
    [21] 韦旺,邵长江,袁得铮等. 强震区桥梁抗震挡块强度退化模型及其应用[J/OL]. 中国公路学报:1-9[2023-10-26]
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  52
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 修回日期:  2024-01-12
  • 网络出版日期:  2024-07-25

目录

    /

    返回文章
    返回