Seismic Failure Analysis of High-Pier Aqueduct Water-Stop Based on Fluid-Solid Coupling
-
摘要:
为探究地震下大型高墩渡槽止水的性能表现,基于流固耦合方法建立渡槽结构有限元模型,模拟动力效应下渡槽-水体的非线性耦合行为,通过引入止水变形失效阈值,重现槽跨间止水的失效过程,模拟止水失效后槽内水体的外溢;依托某实际高墩渡槽结构,通过非线性动力分析得到渡槽的宏细观地震响应,包括槽墩应变、支座位移、止水损伤等,揭示不同支座类型、减隔震装置对渡槽抗震性能的影响. 研究结果表明:在罕遇地震下,槽墩、槽身不会发生显著材料损伤,地震下渡槽结构安全具有保障;但设计地震下,渡槽止水即发生失效,无法保障渡槽震后保持正常引水功能;加入钢阻尼器可有效控制槽跨的变形,保障设计地震下渡槽止水不发生破坏,但罕遇地震下止水不可避免发生破坏,强震下的槽跨变形控制依然面临着挑战.
Abstract:To explore the water-stop performance of a large-scale high-pier aqueduct under earthquakes, a finite element model of the aqueduct was established based on the fluid-solid coupling method, and the nonlinear coupling behavior of the aqueduct and water under dynamic effects was simulated. By introducing the deformation and failure threshold of the water-stop, the failure process between the aqueduct spans was reproduced, and the overflow of the water body in the aqueduct after the water-stop failure was revealed. Based on an actual high-pier aqueduct structure, the macro- and micro-seismic response of the aqueduct was obtained through nonlinear dynamic analysis, including pier strain, bearing displacement, and water-stop damage. The impact of different bearing types and seismic isolation devices on the seismic performance of aqueducts was revealed. The research results show that under rare earthquakes, severe structural damage will not occur to the piers and the aqueduct, and the structural safety of the aqueduct under earthquakes is guaranteed. However, under designed earthquakes, the water-stop of the aqueduct will fail, which cannot guarantee that the aqueduct will maintain the water diversion function after an earthquake. Adding steel dampers can effectively control the deformation of the aqueduct spans, ensuring that the water-stop of the aqueduct will not be damaged under a designed earthquake. However, the water-stop will inevitably be damaged under rare earthquakes, and the deformation control of the aqueduct spans under strong earthquakes still faces challenges.
-
2004年,Donoho[1]提出了关于信号采样、压缩和重构的全新理论——压缩感知理论(compressive sensing,CS). 在大规模机器类型通信(massive machine type communication,mMTC)下,即使是在高峰期,活跃用户的数量也不超过10%[2],这使得压缩感知技术应用在大规模通信场景下成为可能. 压缩感知理论的研究主要集中在3个领域:信号的稀疏表示、高性能测量矩阵的构造以及信号的精准重构[3]. 其中,测量矩阵的构造将直接影响信号重构的误差大小,测量矩阵需要符合一定的条件,如有限等距性质[4](restricted isometry property,RIP),这是保证原始信号不失真重建的必要条件.
学者们尝试通过相关性理论衡量并优化测量矩阵的性能[5]. 研究表明,减小稀疏基与测量矩阵的相关系数能提高压缩感知算法的重构性能. 目前,针对测量矩阵的研究成果不胜枚举. 曾祥洲[6]提出一种基于交替最小化的优化算法,最小化Gram矩阵与目标矩阵差值的傅里叶范数,建立最优测量矩阵,解决最小化单个指标易导致其他指标恶化的问题. Xu等[7]提出一种基于等角紧框架(equiangular tight frame,ETF)的迭代最小化算法,在不改变测量矩阵对应Gram矩阵属性的情况下修改奇异值,以减小Gram矩阵列向量之间的相关性. 宋儒瑛等[8]基于分块矩阵的思想构造新的测量矩阵,验证了测量矩阵的行列数相差不大时所构造的测量矩阵可以代替等角紧框架矩阵. 魏从静[9]对Gram矩阵进行Schmidt正交化,以此增强矩阵列向量之间的独立性,计算过程中的规范正交基能有效提高数值计算过程的稳定性. He等[10]提出一种基于伪随机序列的测量矩阵优化构造方法,将随机高斯矩阵与伪随机序列和Hadamard矩阵相结合,使得测量矩阵拥有更好的性能、较低复杂度和较好的应用价值.
本文对测量矩阵的性能优化算法进行研究,基于Gram矩阵,通过特征值分解降低测量矩阵与稀疏基之间的平均相关性. 再基于ETF理论与梯度缩减迭代算法,使得Gram矩阵向等角紧框架矩阵逼近,降低其非主对角线元素最大值,从而降低最大相关性,提高重构质量.
1. 压缩感知算法与测量矩阵相关性
1.1 压缩感知算法
假设一个长度为N的信号$ \boldsymbol{x}\in {\mathbb{C}}^{N\times 1} $经过一个$ M\times N $(M<N)的测量矩阵$\boldsymbol{\varPhi } $线性投影后,得到长度为M的测量值$ \boldsymbol{y}\in {\mathbb{C}}^{M\times 1} $,如式(1)所示.
y=Φx. (1) 压缩感知技术使用的前提是信号在某种变换基下具有稀疏性. 若x本身不稀疏,但在某个变换域上是稀疏的,式(1)可改写为
{y=Φx=Aθ,A=ΦΨ, (2) 式中:$ {\boldsymbol{\varPsi}}\mathrm{为}N\times N $的稀疏变换矩阵,称为稀疏基或稀疏字典;$ \boldsymbol{\theta } $为${\boldsymbol{x}} $在${\boldsymbol{\varPsi}} $上的投影;A为感知矩阵.
由式(2)可以看出,通过接收信号y来重构原始信号x,本质上是求解线性方程组. 由于$ M < N $,线性方程组有无穷多解. 但$ \boldsymbol{\theta } $是稀疏的,未知数的个数较少,使得重构信号成为可能.
在RIP准则基础上所构造的测量矩阵都能在一定程度上保留信号原本信息,保证重构精度[11]. 当矩阵$ \boldsymbol{A} $满足RIP准则时,测量矩阵的有限等距常数$ {\delta }_{K} $满足式(3).
(1−δK)||x||22⩽||Ax||22⩽(1+δK)||x||22, (3) 式中:K为信号的稀疏度.
RIP准则对测量矩阵进行了限制,使得经过投影后的压缩信号能够保留尽可能多的有用信息,用以在重构过程中更加精确地重构出信号.
当矩阵$ \boldsymbol{A} $满足RIP准则时,压缩感知算法就能通过求解如式(4)所示的L0范数最小问题,对原始信号进行重构.
{ˆθ=arg min||θ||0,s.t.ΦΨθ=y, (4) 式中:$ \hat{\boldsymbol{\theta }} $为原始信号在${\boldsymbol{\varPsi}} $下的最稀疏系数向量.
得到$ \hat{\boldsymbol{\theta }} $后,即可利用稀疏反变换重构出原始信号,如式(5)所示.
ˆx=Ψˆθ, (5) 式中:$ \hat{{\boldsymbol{x}}} $为重构所得的信号.
求解L0范数最小问题是一个NP-hard问题,Donoho等[12]提出,在一定条件下,对L0范数问题进行求解可等价于对L1范数问题进行求解,所求得的解是相同的,即式(4)等价于式(6).
{ˆθ=argmin||θ||1,s.t.ΦΨθ = y. (6) 式(6)可以转化为线性规划问题进行求解. 常用的求解方法有贪婪类算法[13]、凸松弛算法[14]、贝叶斯类算法[15]等.
1.2 mMTC场景上行链路系统模型
在大规模通信场景中,基站端无法保证每个用户都能单独利用资源块,故不可避免地会产生冲突问题,而基站侧也很难得知哪些用户是处于活跃状态,因此活跃用户检测的问题需要得到解决.
假设一个社区用户数为N的蜂窝上行链路,在大规模随机接入的场景下,同一时间点中的设备大多为非活跃状态[16]. 以$ {a}_{n}\in \left\{\mathrm{0,1}\right\} $表示用户的活跃状态,0为非活跃状态,1为活跃状态,且$ 1\leqslant n\leqslant N $,则由$ {a}_{n} $构成的向量$ \boldsymbol{a}=({a}_{1},{a}_{2}, \cdots ,{a}_{{N}}) $中,大部分元素都为0,即$ {{\boldsymbol{a}}} $具备稀疏性,这使得压缩感知技术应用于大规模通信场景成为可能.
假设每个用户都由基站分配了1个长度为M的导频序列$ {\boldsymbol{\varphi }}_{n} $,则这N个用户的导频序列就能组成一个$ M\times N $的矩阵$ \boldsymbol{\varPhi } $,当矩阵$ \boldsymbol{\varPhi } $满足有限等距性质准则时,就可以应用压缩感知理论,基于接收信号y,通过重构算法对原始信号进行估计,进而对活跃用户的身份进行估计.
基站接收到的信号可以表示为
y=∑Nn=0φnanhn=Φx, (7) 式中:$ {{h}}_{n} $为第$ n $个用户与基站之间的信道参数.
定义$ {{x}}_{n}={a}_{n}{{h}}_{n} $,$ \boldsymbol{x}=({{x}}_{1},{{x}}_{2},\cdots ,{{x}}_{\boldsymbol{N}})= ({a}_{1}{{h}}_{1}, {a}_{2}{{h}}_{2},\cdots , {a}_{N}{{h}}_{N}) $. 显然,$ \boldsymbol{x} $呈现为稀疏状态. 若第$ n $个用户为活跃状态,则$ {{x}}_{n} $等于真实的信道参数;若用户为非活跃状态,则$ {{x}}_{n} $为0. 综上可知,在mMTC场景中,活跃用户估计与信道估计可以联合实现.
1.3 测量矩阵列相关性与Welch下界
$ \boldsymbol{\varPhi } $的列相关性$\mu $可以表示为列向量之间内积的最大值,如式(8)所示[17].
μ=max|⟨φi,φj⟩|, (8) 式中:$ {\boldsymbol{\varphi }}_{i}、{\boldsymbol{\varphi }}_{j} $分别为矩阵$ \boldsymbol{\varPhi } $的第i、j列,$ 1\leqslant i, j\leqslant N, \mathrm{且}\;i\ne j $.
对于矩阵$ \boldsymbol{\varPhi } $,在其列向量单位化后,若$ N\leqslant M \times (M + 1)/2 $,则称矩阵$ \boldsymbol{\varPhi } $的列相关性存在下界,这个下界即Welch界,如式(9)所示.
μ⩾√N−M(N−1)M. (9) 当式(9)取等号时,称该矩阵具备等角紧框架结构[18]. 特别地,若M$\ll $N,则下界将收敛至$ \sqrt{1/M} $. 通过使测量矩阵与稀疏基矩阵的互相关系数逼近Welch界,可以保证测量矩阵具有更好的压缩观测性能.
2. 基于矩阵分解与ETF理论的测量矩阵优化算法
测量矩阵$ \boldsymbol{\varPhi } $与稀疏基$ {\boldsymbol{\varPsi }} $之间的相关性是影响测量矩阵性能的因素之一. 2个矩阵之间的相关性定义为
μ(Φ,Ψ)=max|⟨φi,γj⟩|, (10) 式中:$ {\boldsymbol{\gamma }}_{j} $为矩阵$ {\boldsymbol{\varPsi }} $的第j列.
但仅依靠此定义很难得出两矩阵之间的具体联系. 为此,Elad[19]引入了Gram矩阵,从另一个角度对测量矩阵$ \boldsymbol{\varPhi } $和稀疏基$ {\boldsymbol{\varPsi }} $之间的相关性进行了定义,将最大相关系数定义为Gram矩阵中非对角线元素绝对值的最大值.
定义平均相关系数$ {\mu }_{\mathrm{a}\mathrm{v}\mathrm{g}} $为Gram矩阵中所有非主对角元素绝对值之和的平均值. 当 Gram 矩阵的非主对角元素中最大值较大而平均值较小时,如果仅依据最大值来判断,可能会误认为该矩阵性能不佳. 然而,由于其平均值相对较小,实际应用中的性能也相对良好. 因此,引入平均相关系数是为了避免因最大值与平均值差距过大而导致性能的误判.
首先,定义等价字典$ \boldsymbol{D} $,$ \boldsymbol{D}=\boldsymbol{\varPhi }{\boldsymbol{\varPsi }} $,假设$ {\boldsymbol{\vartheta }}_{i} $是矩阵$ \boldsymbol{D} $的第i列;然后,将等价字典$ \boldsymbol{D} $的每列进行单位化处理,得到单位化字典矩阵$ \tilde{\boldsymbol{D}}=[{\tilde{\boldsymbol{\vartheta }}}_{1}\;\;{\tilde{\boldsymbol{\vartheta }}}_{2}\;\;\cdots\;\; {\tilde{\boldsymbol{\vartheta }}}_{N}] $,并以此求出对应的Gram矩阵,如式(11)所示.
G=˜DT˜D=[1˜ϑ1˜ϑ2⋯˜ϑ1˜ϑN˜ϑ2˜ϑ11⋯˜ϑ2˜ϑN⋮⋮⋮˜ϑN˜ϑ1˜ϑN˜ϑ2⋯1]. (11) 2.1 基于特征值分解优化平均相关性
由上文可知,单位化后的等价字典$ \tilde{\boldsymbol{D}} $对应的Gram矩阵是一个主对角线元素全为1的N维半正定矩阵,其秩为M,假设其M个非零特征值为$ {\lambda }_{q}\;(q=1, 2, \cdots ,M) $,有$ {\lambda }_{q} > 0 $,由于矩阵所有特征值的和等于矩阵对角线上的元素之和,因此可以推出式(12).
∑Mq=1λq=N. (12) 假设$ {\boldsymbol{l}}_{q} $是Gram矩阵$ \boldsymbol{G} $的某一特征向量,$ {{\lambda }}_{q} $是其对应的特征值,则有$ \boldsymbol{G}{\mathrm{\lambda }}_{q}={\boldsymbol{l}}_{q}{\mathrm{\lambda }}_{q} $. 又因为$ \boldsymbol{G} $为对称矩阵,则$ {\boldsymbol{G}}^{{\mathrm{T}}}\boldsymbol{Gl}_{q}=\boldsymbol{GG}{\boldsymbol{l}}_{q}=\boldsymbol{Gl}_{q}{\lambda }_{q}={\boldsymbol{l}}_{q}{\lambda }_{q}^{2} $,所以矩阵$ {\boldsymbol{G}}^{\mathrm{T}}\boldsymbol{G} $的特征值为$ \boldsymbol{G} $特征值的平方. 假设$ {g}_{i,j} $是Gram矩阵$ \boldsymbol{G} $中的第i行第j列的元素,则矩阵$ {\boldsymbol{G}}^{\mathrm{T}}\boldsymbol{G} $对角线上的元素之和为$ {\displaystyle\sum\nolimits _{i,j=1}^{N}}{{g}^{2}_{i,j}} $,于是推出式(13).
∑Mq=1λ2q=∑Mi=jg2i,j. (13) 考虑到非主对角线元素绝对值之和与其平方的和具有相同的单调性,因此,可以通过最小化非主对角线元素平方的和来降低平均互相关系数$ {\mu }_{\mathrm{a}\mathrm{v}\mathrm{g}} $,实现平均相关性的优化,结合式(12),可将问题转化为式(14)所示的问题.
{min∑i≠jg2i,j=∑Mq=1λ2q−∑Mi=1g2i,i,s.t.∑Mq=1λq = N. (14) 要在矩阵$ \boldsymbol{G} $的特征值之和保持不变的前提下,求出上述问题最优解,就需要尽可能减小矩阵$ \boldsymbol{G} $的特征值平方的和. 而矩阵$ \boldsymbol{G} $的特征值都大于0,因此,将所有特征值设置为平均值即可. 对Gram矩阵$ \boldsymbol{G} $进行特征值分解,如式(15)所示.
G=PΛPT, (15) 式中:$ \boldsymbol{P} $为矩阵$ \boldsymbol{G} $的特征向量组成的矩阵,$ \boldsymbol{\varLambda } $为特征值组成的对角矩阵.
将对角矩阵$ \boldsymbol{\varLambda } $中的非零元素修改为$ M/N $,得到新的矩阵$ \hat{\boldsymbol{\varLambda }} $,再将对角矩阵$ \hat{\boldsymbol{\varLambda }} $进行分解,如式(16)所示.
ˆΛ=LTL, (16) 式中:$ \boldsymbol{L} $为大小为$ M\times N $的矩阵.
${\boldsymbol{L}} $的主对角线中,对应$ \hat{\boldsymbol{\varLambda }} $中非零项的元素设为$ \sqrt{{N}/{M}} $,其余元素皆为0. 重新计算Gram矩阵,得到
G=PLTLPT. (17) 根据式(11),可以得到
ˆD=LPT, (18) 式中:$ \hat{\boldsymbol{D}} $为更新后的字典矩阵.
2.2 基于ETF理论优化最大相关性
2.2.1 构造ETF矩阵
由于对字典矩阵$ \boldsymbol{D} $进行了列单位化处理,故得到的Gram矩阵中对角线元素全为1,且非对角线元素的值也都在1和 −1之间. 通过Gram矩阵减小测量矩阵$ \boldsymbol{\varPhi } $和稀疏基$ {\boldsymbol{\varPsi }} $之间的相关性,等价于减小Gram矩阵的非对角线元素. 当两矩阵之间不相关时,其所对应的Gram矩阵的非对角线元素也将全为0,此时,Gram矩阵等价于单位矩阵E. 所以,使Gram矩阵向$ {\boldsymbol{E}} $逼近,即可降低其最大相关性,如式(19)所示.
min‖ (19) 要让2个矩阵相关性几乎为0,这在实际情况中是比较困难的[20]. 由于当矩阵满足等角紧框架理论时,其相关性呈最小状态[18],同时,考虑到矩阵非对角线元素几乎都是一些接近0的小数,因此将条件放宽,即使非主对角线元素小于等于某一阈值$ \mu_0 $,使得矩阵$ \boldsymbol{G} $的非主对角线元素朝$ \mu_0 $逼近,$ \mu_0 $即为所期望的两矩阵之间的相关性. 假设与矩阵$ \boldsymbol{G} $维度相同的单位矩阵$ \boldsymbol{H}\;(\boldsymbol{H}=({H}_{i,j}),i\ne j) $,按照式(20)对矩阵$ \boldsymbol{H} $进行修改.
{{{H}}_{i,j}} = \left\{ {\begin{array}{*{20}{l}} {{{g}_{i,j}}},\quad{\left| {{{g}_{i,j}}} \right| < \mu_0 }, \\ {\mu_0{\mathrm{sgn}}\;{{g}_{i,j}} },\quad{\left| {{{g}_{i,j}}} \right| > \mu_0 } . \end{array}} \right. (20) 将阈值$ \mu_0 $设置为Welch界,可以让测量矩阵与稀疏基矩阵的相关系数逼近下界[21],使得测量矩阵具有更好的性能.
对矩阵$ \boldsymbol{H} $进行更新后,就需要使得Gram矩阵$ \boldsymbol{G} $尽可能逼近矩阵$ \boldsymbol{H} $. 将关于矩阵$ \boldsymbol{G} $、$ \boldsymbol{H} $的表达式设为$ f $,如式(21)所示.
f = \left\| {{\boldsymbol{G}} - {\boldsymbol{H}}} \right\|_2^2. (21) 为使矩阵$ \boldsymbol{G} $尽可能逼近矩阵$ \boldsymbol{H} $,将问题转化为求函数f的最小值,将$ \boldsymbol{G}={\tilde{\boldsymbol{D}}}^{\rm{T}}\tilde{\boldsymbol{D}} $代入后,式(21)转化为式(22).
f = \left\| {{{{{\tilde {\boldsymbol D}}}}^{\mathrm{T}}}{{\tilde {\boldsymbol D}}} - {\boldsymbol{H}}} \right\|_2^2. (22) 但是矩阵$ \boldsymbol{G} $的秩为$ M $,而修改后的矩阵$ \boldsymbol{H} $的秩为$ N $,因此,考虑对矩阵$ \boldsymbol{H} $降秩. 首先,进行特征值分解$ \boldsymbol{H}=\boldsymbol{P}{\boldsymbol{\varLambda }}_{{H}}{\boldsymbol{P}}^{{\mathrm{T}}} $,并修改其特征值,得到秩为$ M $的矩阵$ {\boldsymbol{H}}_{{M}} $,如式(23)所示,其中,$ {\boldsymbol{\varLambda }}_{{H}} $为特征值组成的对角矩阵,特征值由大到小排列.
{{\boldsymbol{H}}_{M}} = {\boldsymbol{PI}}{{\boldsymbol{\varLambda }}_{{H}}}{{\boldsymbol{P}}^{\mathrm{T}}}\text{,} (23) 式中:$ \boldsymbol{P} $为矩阵$ \boldsymbol{H} $的特征向量组成的矩阵;$ \boldsymbol{I}=\left[\begin{array}{cc}{\boldsymbol{E}}_{M}& {\boldsymbol{0}}\\ {\boldsymbol{0}}& {\boldsymbol{0}}\end{array}\right]\in {\mathbb{R}}^{N\times N} $,$ {\boldsymbol{E}}_{{M}} $为维度为$ {M} $的单位矩阵.
假设$ {{{\lambda}} }_{{{H}}_{{M}}}=({\lambda }_{{{H}}_{{M}},1},\;{\lambda }_{{{H}}_{{M}},2},\; \cdots ,\; {\lambda }_{{{{H}}}_{{M}},{M}},\;0,\; \cdots, 0) $,是矩阵$ {\boldsymbol{H}}_{{M}} $的特征值. 将所有特征值设为平均值,降低矩阵非主对角线的平方和,从而减少矩阵的平均相关性. 令$ {\hat{\lambda }}_{{{H}}_{{M}}}=\dfrac{1}{M}\displaystyle\sum _{p=1}^{M}{\lambda }_{{{H}}_{{M}},p} $,则修改后的特征值矩阵$ {\hat{\boldsymbol{\varLambda }}}_{{{H}}_{{M}}}={\mathrm{diag}}({\hat{\lambda }}_{{{H}}_{{M}}},{\hat{\lambda }}_{{{H}}_{{M}}}, \cdots ,{\hat{\lambda }}_{{{H}}_{{M}}},0,\cdots ,0) $. 优化后的矩阵为
{{\boldsymbol{H}}_{\rm{opt}}} = {\boldsymbol{P}}{\hat{\boldsymbol{\varLambda }}_{{{\boldsymbol{H}}_{M}}}}{{\boldsymbol{P}}^{\mathrm{T}}}. (24) 此时,所求问题变为式(25)所示问题.
{\text{min}}\;\left\| {{{{{\tilde {\boldsymbol D}}}}^{\mathrm{T}}}{{\tilde {\boldsymbol D}}} - {{\boldsymbol{H}}_{{{\mathrm{opt}}}}}} \right\|_2^2 . (25) 2.2.2 基于梯度缩减算法求最优解
最优测量矩阵$ \hat{\boldsymbol{\varPhi }} $存在解析解,可通过交替策略与奇异值分解[22]求出. 但其子问题的计算成本偏高,耗时较长. 因此,本文选择梯度缩减的思想对原问题求最优解.
由于矩阵$ {\boldsymbol{H}}_{\mathrm{o}\mathrm{p}\mathrm{t}} $为常量,f是一个关于字典矩阵$ \tilde{\boldsymbol{D}} $的函数,求f的最小值问题也就是求矩阵f关于字典矩阵$ \tilde{\boldsymbol{D}} $的梯度,由此需要找出目标函数关于字典矩阵$ \tilde{\boldsymbol{D}} $的下降方向,假设下降方向为k,如式(26)所示.
k = \frac{\partial }{{\partial{d_{i,j}}}}\left\| {{{{{\tilde {\boldsymbol D}}}}^{\mathrm{T}}}{{\tilde {\boldsymbol D}}} - {{\boldsymbol{H}}_{\rm{opt}}}} \right\|_2^2 \text{,} (26) 式中:$({d_{i,j}})={{\tilde {\boldsymbol D}}}. $
由矩阵分解规则变换为[23]
\begin{split} & k = \frac{\partial }{{\partial {d_{i,j}}}}{\mathrm{Tr}}\left\{ {({{{{\tilde {\boldsymbol D}}}}^{\mathrm{T}}}{{\tilde {\boldsymbol D}}} - {{\boldsymbol{H}}_{{{\mathrm{opt}}}}}){{({{{{\tilde {\boldsymbol D}}}}^{\mathrm{T}}}{{\tilde {\boldsymbol D}}} - {{\boldsymbol{H}}_{{{\mathrm{opt}}}}})}^{\mathrm{T}}}} \right\} = \\ &\quad 4{{\tilde {\boldsymbol D}}}({{{{\tilde {\boldsymbol D}}}}^{\mathrm{T}}}{{\tilde {\boldsymbol D}}} - {{\boldsymbol{H}}_{{{\mathrm{opt}}}}}) . \end{split} (27) 沿着下降方向迭代,逐渐迭代缩减目标值,如式(28)所示.
{{{\tilde {\boldsymbol D}}}_u} = {{{\tilde {\boldsymbol D}}}_{u - 1}} - 4\beta {{{\tilde {\boldsymbol D}}}_{u - 1}}({{\tilde {\boldsymbol D}}}_{u - 1}^{\mathrm{T}}{{{\tilde {\boldsymbol D}}}_{u - 1}} - {{\boldsymbol{H}}_{{{\mathrm{opt}}}}}) \text{,} (28) 式中:$u $为迭代次数;$ {\tilde{\boldsymbol{D}}}_{u} $为第$ u $次迭代后的字典矩阵;$ \beta $为每次缩减的步长,且$ \beta > 0 $,通常按照经验取较小的值.
经过多次迭代后,通过逆运算得到最终结果$ \hat{\boldsymbol{\varPhi }} $,如式(29)所示.
{{\hat {\boldsymbol \varPhi} }} = {{{\tilde {\boldsymbol D}}}_u}{{\boldsymbol{\varPsi }}^{ - 1}}. (29) 2.3 算法流程
首先,对Gram矩阵进行特征值分解,优化对角矩阵中的特征值,降低Gram矩阵非对角元素平均值;随后,构造出等角紧框架矩阵,并按照梯度缩减的策略使得Gram矩阵向等角紧框架矩阵逼近,减少其最大相关性,提高重构质量;最后,得到优化后的测量矩阵. 定义迭代终止参数$ {\sigma } $,当式(30)成立时,停止迭代,输出优化后的测量矩阵.
\left\| {{{\tilde {\boldsymbol D}}}_u^{\mathrm{T}}{{{{\tilde {\boldsymbol D}}}}_u} - {{\boldsymbol{H}}_{{{\mathrm{opt}}}}}} \right\|_2^2 < \sigma . (30) 基于矩阵分解与ETF理论的测量矩阵优化算法如下所示:
输入:测量矩阵$ \boldsymbol{\varPhi } $、测量矩阵$ \boldsymbol{\varPhi } $的行数M与列数N,稀疏基${\boldsymbol{\varPsi }}$、最大迭代次数t、缩减步长$ \beta $、Welch界$ \mu_0 $,迭代终止参数$ {\sigma } $;
输出:优化后的测量矩阵$ \hat{\mathit{\Phi }} $;
初始化:生成$ {N}\times {N} $的单位矩阵$ \boldsymbol{H} $,迭代次数$ u=1 $,计算字典矩阵$ \boldsymbol{D} $,并列标准化得到$ {\tilde{\boldsymbol{D}}}_{0} $;
1) 生成Gram矩阵:$ \boldsymbol{G}={\tilde{\boldsymbol{D}}}_{u-1}^{{\mathrm{T}}}{\tilde{\boldsymbol{D}}}_{u-1} $;
2) 对矩阵$ \boldsymbol{G} $进行特征值分解:$ \boldsymbol{G}={\boldsymbol{P}} {\boldsymbol{\varLambda }} {\boldsymbol{P}}^{{\mathrm{T}}} $;
3) 将矩阵$ {\boldsymbol{\varLambda }} $的对角线元素中的非零项设置为N/M,得到$ {\hat{\boldsymbol{\varLambda }}}_{{G}} $;
4) 重新计算Gram矩阵$ {\boldsymbol{G}}={\boldsymbol{P}} {\hat{\boldsymbol{\varLambda }}} {\boldsymbol{P}}^{{\mathrm{T}}} $;
5) 将矩阵$ {\hat{\boldsymbol{\varLambda }}} $进行分解,$ {\hat{\boldsymbol{\varLambda }}} ={\boldsymbol{L}}^{{\mathrm{T}}}\boldsymbol{L} $;
6) 代入$ {\boldsymbol{G}} $,计算$ {\boldsymbol{G}}={\boldsymbol{P}} {\boldsymbol{L}}^{{\mathrm{T}}}\boldsymbol{L}{\boldsymbol{P}}^{{\mathrm{T}}} $,令$ {\hat{\boldsymbol{D}}}_{i}=\boldsymbol{L}{\boldsymbol{P}}^{{\mathrm{T}}} $;
7) 若$ \left|{{g}}_{i,j}\right| \leqslant \mu_0 $,$ {\mathit{H}}_{i,j}={{g}}_{i,j} $,若$ \left|{{g}}_{i,j}\right| > \mu_0 $,$ {\mathit{H}}_{i,j}= \mu_0 \;{\mathrm{sgn}}\left({g}_{i,j}\right) $,对矩阵$ \boldsymbol{H} $进行修改;
8) 对矩阵$ {\boldsymbol{H}} $特征值分解$ ,\boldsymbol{H}={\boldsymbol{P}}{\boldsymbol{\varLambda }}_H{\boldsymbol{P}}^{{\mathrm{T}}} $;
9) 利用矩阵$ \boldsymbol{I}=\left[\begin{array}{cc}{\boldsymbol{E}}_{M}& {\boldsymbol{0}}\\ {\boldsymbol{0}}& {\boldsymbol{0}}\end{array}\right] $对矩阵$ \boldsymbol{H} $降秩,并重新计算$ {\boldsymbol{H}}_{M}={\boldsymbol{P}}_{{H}}\boldsymbol{I}{\boldsymbol{\varLambda }}_{{H}}{\boldsymbol{P}}_{{H}}^{{\mathrm{T}}} $;
10) 对$ {\boldsymbol{H}}_{M} $特征值分解,$ {\boldsymbol{H}}_{M}={\boldsymbol{P}}{\boldsymbol{\varLambda }}_{{{H}}_{M}}{\boldsymbol{P}}^{{\mathrm{T}}} $,$ {\boldsymbol{\varLambda }}_{{{H}}_{M}}= {\mathrm{diag}}({\lambda }_{{{H}}_{{M}},1}, {\lambda }_{{{H}}_{{M}},2}, \cdots , {\lambda }_{{{H}}_{{M}},M},0, \cdots ,0) $;
11) 令$ {\hat{\lambda }}_{{\boldsymbol{H}}_{\mathrm{M}}}=\displaystyle\frac{1}{M}\sum _{p=1}^{M}{\lambda }_{{\boldsymbol{H}}_{\mathrm{M}},p} $,修改特征值矩阵$ {\hat{\boldsymbol{\varLambda }}}_{{{H}}_{M}}= {\mathrm{diag}}({\hat{\lambda }}_{{{H}}_{{M}}},{\hat{\lambda }}_{{{H}}_{{M}}}, \cdots ,{\hat{\lambda }}_{{{H}}_{{M}}},0, \cdots ,0) $;
12) $ {\boldsymbol{H}}_{{\mathrm{opt}}}={\boldsymbol{P}}{\hat{\boldsymbol{\varLambda }}}_{{{H}}_{M}}{\boldsymbol{P}}^{{\mathrm{T}}} $;
13) $ {\tilde{\boldsymbol{D}}}_{u}={\tilde{\boldsymbol{D}}}_{u-1}-4\beta {\tilde{\boldsymbol{D}}}_{u-1}({\tilde{\boldsymbol{D}}}_{u-1}^{{\mathrm{T}}}{\tilde{\boldsymbol{D}}}_{u-1}-{\boldsymbol{H}}_{{\mathrm{opt}}}) $;
14) 若$ {\left|\right|{\tilde{\boldsymbol{D}}}_{u}^{{\mathrm{T}}}{\tilde{\boldsymbol{D}}}_{u}-{\boldsymbol{H}}_{{\mathrm{opt}}}\left|\right|}_{2}^{2} < \sigma $,进入16),否则进入15);
15) 若$ u $<$ t $,则$ u=u + 1 $,返回1),否则进入16);
16) 输出$ \hat{\boldsymbol{\varPhi }}={\tilde{\boldsymbol{D}}}_{u}{\boldsymbol{\varPsi }}^{-1} $.
3. 算法仿真
为验证本文优化算法的有效性,在MATLAB上进行仿真,以正交匹配追踪(orthogonal matching pursuit,OMP)作为重构算法,实验参数如表1所示.
表 1 参数表Table 1. Parameters参数名称 参数值 $ \boldsymbol{\varPhi } $ 随机导频矩阵 $ {\boldsymbol{\varPsi }}$ 单位矩阵 t/次 1000 $ \beta $ 0.01 信道类型 随机瑞利衰落 导频长度 100 信号长度 256 潜在用户数/人 30 图1比较了$ \boldsymbol{\varPhi } $与$ {\boldsymbol{\varPsi }} $的相关系数随观测维度M的变化趋势. 由图可见,经过基于矩阵分解与ETF理论的改进后,测量矩阵与稀疏基之间的相关性明显降低.
图2比较了不同稀疏度的情况下不同算法错误估计活跃用户的数量. 从图中可以看出:信号稀疏度低于30时,各算法都能准确地估计活跃用户,但当稀疏度大于30以后,随着稀疏度不断增加,错误估计的活跃用户数量都在增加;本文提出的优化算法性能较好.
图3比较了不同稀疏度下,单次重构所消耗的时间. 文献[6-10]所提及的矩阵优化算法复杂度分别为$ {O}\left({{N}}^{2}\right){、}{O}\left({{N}}^{2}\right){、}{O}\left(1\right){、}{O}\left({N}\right){、}{O}\left({N}\right) $,本文所提出的算法复杂度为$ {O}\left({{N}}^{2}\right) $. 从图中可以看出,本文提出的算法所消耗的时间较多,是因为通过特征值分解优化了平均相关性,构造出ETF矩阵后又对其进行降秩与降低平均相关性的操作,计算流程较多,因此单次重构时间相对较长.
图4比较了不同信噪比(SNR)下信号稀疏度为30时,通过不同算法进行信道估计所得的均方误差(MSE). 从结果可以看出,随着信噪比的增加,各算法均方误差都在降低,其中,本文提出的测量矩阵优化算法效果最好.
图5比较了在不同信噪比下信号稀疏度为30时不同算法所得的误码率(BER). 由图可知,随着信噪比的增加,各个算法的误码率也逐渐下降,其中,本文提出的测量矩阵改进算法性能最好.
通过上述仿真实验可以看出,本文提出的基于矩阵分解和ETF理论的测量矩阵改进算法,虽然在时间复杂度上有所不足,但在重构性能、信道估计与活跃用户检测上有一定的优势.
4. 总 结
在大规模通信场景下,基于测量矩阵与稀疏基所构造出的Gram矩阵,提出一种矩阵分解与ETF理论相结合的优化算法. 主要结论如下:
1) 所提出的算法有效减小了测量矩阵与稀疏基之间的相关性,提高了信号重构的质量,优化了测量矩阵在信道估计与活跃用户检测中的性能.
2) 未来可对该算法时间复杂度进行优化,以提高重构的效率. 该算法单次重构时间相对较高,在后续研究中将尝试在保证算法性能的基础上,降低其时间复杂度.
-
表 1 渡槽动力响应分析工况设施
Table 1. Working conditions for aqueduct dynamic response
工况名称 支座 挡块 阻尼器 PRB 盆式橡胶支座 无 无 FPS-R 摩擦摆支座 有 无 FPS-D 摩擦摆支座 无 有 表 2 槽墩混凝土最大应力
Table 2. Maximum stress of concrete in pier
MPa 工况 PRB FPS-R FPS-D DBE 1.31 0.31 0.95 MCE 2.14 0.91 1.58 VRE 2.66* 2.41 2.66* *注:主应力超过开裂应力,无法继续增加. -
[1] 刘长升,刘南廷,高连庆. 引大济岷工程与都江堰灌区的关系分析[J]. 四川水利,2023,44(1): 39-41,58.LIU Changsheng, LIU Nanting, GAO Lianqing. Analysis on the relationship between the project of diverting water from the Great River to the Min River and Dujiangyan Irrigation District[J]. Sichuan Water Resources, 2023, 44(1): 39-41,58. [2] 徐俊祖,张方浩,张原硕,等. 宁蒗县 1988 年 M S 5.5,2012 年 M S 5.7 及 2022 年 M S 5.5 地震震害特征对比分析[J]. 地震地磁观测与研究,2022,43(2): 170-179.XU Junzu, ZHANG Fanghao, ZHANG Yuanshuo, et al. Comparative analysis of earthquake damage characteristics of Ninglang MS 5.5 earthquake in 1988, MS 5.7 earthquake in 2012 and MS 5.5 earthquake in 2022[J]. Seismological and Geomagnetic Observation and Research, 2022, 43(2): 170-179. [3] 杨世浩,李正农,宋一乐,等. 大型渡槽支座隔震研究[J]. 振动工程学报,2009,22(2): 188-192.YANG Shihao, LI Zhengnong, SONG Yile, et al. Seismic isolation of large aqueduct by using seismic isolation bearing[J]. Journal of Vibration Engineering, 2009, 22(2): 188-192. [4] 季日臣,唐艳,夏修身,等. 大型梁式渡槽采用摩擦摆支座的减隔震研究[J]. 水力发电学报,2013,32(3): 213-217.JI Richen, TANG Yan, XIA Xiushen, et al. Study on seismic isolation and resistance of large beam aqueduct with friction pendulum bearings[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 213-217. [5] 张多新,李嘉豪,王清云,等. 基于 “设计标准” 的大型渡槽动力计算与隔减震研究[J]. 水利学报,2021,52(7): 873-883.ZHANG Duoxin, LI Jiahao, WANG Qingyun, et al. Research on seismic isolation and reduction of large aqueduct and its dynamic calculation based on\ “Design Standards\”[J]. Journal of Hydraulic Engineering, 2021, 52(7): 873-883. [6] 徐瑞祥,朱璨,尤岭,等. 高烈度地区高架渡槽自复位减隔震支座设计[J]. 人民长江,2022,53(6): 153-158.XU Ruixiang, ZHU Can, YOU Ling, et al. Design of bevel guide automatic reset seismic isolation bearing for elevated aqueduct in high intensity area[J]. Yangtze River, 2022, 53(6): 153-158. [7] 祝贺彬. 梁式渡槽的减隔震应用研究[D]. 绵阳:西南科技大学,2021. [8] HUANG L, HOU Y J, WANG B, et al. Collision in the expansion joint effects on the seismic behavior of large-scale aqueduct[J]. Journal of Asian Architecture and Building Engineering, 2021, 20(6): 663-673. doi: 10.1080/13467581.2020.1800478 [9] 张多新,李嘉豪,王志强,等. 高烈度地区大型多跨渡槽间横向错动位移研究[J]. 地震工程与工程振动,2021,41(5): 144-153.ZHANG Duoxin, LI Jiahao, WANG Zhiqiang, et al. Research on transverse alternate displacement of large multi-span aqueduct in high seismic intensity area[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(5): 144-153. [10] HOUSNER G W. Dynamic pressures on accelerated fluid containers[J]. The Bulletin of the Seismological Society of America, 1957, 47(1): 15-35. doi: 10.1785/BSSA0470010015 [11] 王海波,李春雷,朱璨,等. 大型薄壁输水渡槽流固耦合振动台试验研究[J]. 水利学报,2020,51(6): 653-663.WANG Haibo, LI Chunlei, ZHU Can, et al. Experimental study of dynamic interaction between large thin wall aqueduct and water[J]. Journal of Hydraulic Engineering, 2020, 51(6): 653-663. [12] LI Y C, DI Q S, GONG Y Q. Equivalent mechanical models of sloshing fluid in arbitrary-section aqueducts[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(6): 1069-1087. [13] 齐春,何川,封坤. 考虑流固耦合效应的水下盾构隧道受力特性[J]. 西南交通大学学报,2015,50(2): 306-311,330.QI Chun, HE Chuan, FENG Kun. Fluid-solid interaction-based mechanical characteristics of underwater shield tunnel[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 306-311,330. [14] 张多新,崔越越,王静,等. 大型渡槽结构动力学研究进展(2010—2019)[J]. 自然灾害学报,2020,29(4): 20-33.ZHANG Duoxin, CUI Yueyue, WANG Jing, et al. Research progress in structural dynamics of large scale aqueduct (2010-2019)[J]. Journal of Natural Disasters, 2020, 29(4): 20-33. [15] 中国水利水电科学研究院. 水工建筑物抗震设计标准:GB51247—2018[S]. 北京:中国电力出版社,2018. [16] HAN Q H, LI M Y, WANG Z X, et al. Strategy of scaled modeling for underwater shaking table tests on cylindrical marine structures under coupled earthquake and wave–current action: a review[J]. Earthquake Engineering and Resilience, 2023, 2(3): 263-281. doi: 10.1002/eer2.58 [17] 梁桓玮,邓开来,张延杰,等. 地震下方形大断面渡槽水体晃动效应对比分析[J]. 世界地震工程,2023,39(4): 86-94.LIANG Huanwei, DENG Kailai, ZHANG Yanjie, et al. Comparative analysis of slosh effect of aqueduct with large square section under earthquake[J]. World Earthquake Engineering, 2023, 39(4): 86-94. [18] 中华人民共和国国家标准. 高分子防水材料第2部分:止水带:GB/T18173.2—2014[S]. 北京:中国标准出版社. 2014. [19] 张永亮,张跃进,王常峰. 竖向地震动对摩擦摆支座隔震桥梁地震反应的影响[J]. 兰州交通大学学报,2012,31(1): 18-22.ZHANG Yongliang, ZHANG Yuejin, WANG Changfeng. Effect of vertical ground motion on seismic response of an isolated bridge with FPS[J]. Journal of Lanzhou Jiaotong University, 2012, 31(1): 18-22. [20] LIAO M, WU B, ZENG X Z, et al. Incremental dynamic analysis of the long-span continuous beam bridge considering the fluctuating frictional force of rubber bearing[J]. Advances in Bridge Engineering, 2021, 2(1): 1-19. doi: 10.1186/s43251-020-00022-7 [21] 韦旺,邵长江,袁得铮等. 强震区桥梁抗震挡块强度退化模型及其应用[J/OL]. 中国公路学报:1-9[2023-10-26] -