• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

采用模型辅助ESO的磁悬浮转子抗干扰性能

金超武 曹迎庆 周瑾 叶周铖 辛宇

金超武, 曹迎庆, 周瑾, 叶周铖, 辛宇. 采用模型辅助ESO的磁悬浮转子抗干扰性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220803
引用本文: 金超武, 曹迎庆, 周瑾, 叶周铖, 辛宇. 采用模型辅助ESO的磁悬浮转子抗干扰性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220803
JIN Chaowu, CAO Yingqing, ZHOU Jin, YE Zhoucheng, XIN Yu. Anti-Disturbance Performance of Maglev Rotor Using Model Assisted Extended State Observer[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220803
Citation: JIN Chaowu, CAO Yingqing, ZHOU Jin, YE Zhoucheng, XIN Yu. Anti-Disturbance Performance of Maglev Rotor Using Model Assisted Extended State Observer[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220803

采用模型辅助ESO的磁悬浮转子抗干扰性能

doi: 10.3969/j.issn.0258-2724.20220803
基金项目: 国家自然科学基金(51875275,52275059);江苏省六大人才高峰项目(JNHB-041);航空发动机及燃气轮机基础科学中心项目(P2022-B-Ⅲ-004-001);江苏省重点研发计划(BE2019122)
详细信息
    作者简介:

    金超武(1980―),男,副教授,研究方向为磁悬浮技术与振动控制,E-mail:jinchaowu@nuaa.edu.cn

  • 中图分类号: TH133.3

Anti-Disturbance Performance of Maglev Rotor Using Model Assisted Extended State Observer

  • 摘要:

    随着正弦干扰频率的提高,扩张状态观测器(extended state observer,ESO)的性能会下降,为提高磁悬浮转子系统中ESO的干扰抑制能力,首先,建立单自由度磁悬浮轴承转子系统数学模型;其次,设计ESO并分析其干扰抑制效果下降的原因;在此基础上,提出一种模型辅助扩张状态观测器(model assisted extended state observer, MESO)以改进带宽配置方式,提高干扰抑制效果;然后,在频域内分析基于MESO的自抗扰控制器的稳定性;最后,通过仿真与试验验证了所提出观测器的有效性. 研究结果表明:带宽的增加会放大系统噪声的影响,使系统的控制电压增加;随着干扰频率的提高,MESO对高频正弦干扰的抑制效果会下降,但仍可以降低转子的模态振幅;对50 Hz旋转频率下的转子分别施加频率为10 Hz、振幅为2 mm的基础简谐干扰与1g的基础冲击干扰, 相比ESO,MESO控制下的转子位移分别降低了16.3%与22.6%,控制电压降低了约14%.

     

  • 图 1  单自由度AMB转子系统结构

    Figure 1.  Structure of 1-DOF AMB rotor system

    图 2  H1(s)的伯德图

    Figure 2.  Bode diagram of H1(s)

    图 3  H2(s)的伯德图

    Figure 3.  Bode diagram of H2(s)

    图 4  ADRC的标准框图

    Figure 4.  Standard block diagram of ADRC

    图 5  100~3000带宽下闭环系统特征根轨迹

    Figure 5.  Characteristic root locus of closed-loop system under bandwidth of 100−3 000

    图 6  ADRC控制框图

    Figure 6.  ADRC control block diagram

    图 7  不同带宽下转子位移与控制电压对比

    Figure 7.  Comparison of rotor displacement and control voltage under different bandwidths

    图 8  阶跃干扰下不同观测器仿真

    Figure 8.  Simulation of different observers under step disturbance

    图 9  0~200 Hz扫频转子位移仿真

    Figure 9.  Simulation of rotor displacement under sweep frequency of 0−200 Hz

    图 10  基础激励下磁悬浮转子系统实验平台现场

    Figure 10.  Experimental platform of maglev rotor system under fundamental excitation

    图 11  阶跃干扰下转子位移对比

    Figure 11.  Comparison of rotor displacement under step disturbance

    图 12  0~200 Hz扫频转子位移对比

    Figure 12.  Comparison of rotor displacement under sweep frequency of 0−200 Hz

    图 13  基础简谐激励下控制效果对比

    Figure 13.  Comparison of control effects under fundamental harmonic excitation

    图 14  基础冲击激励下控制效果对比

    Figure 14.  Comparison of control effects under fundamental impulse excitation

    表  1  AMB转子系统参数

    Table  1.   Parameters of AMB rotor system

    符号 参数值
    m/kg 3.55
    A/m2 2 × 10−4
    N/匝 150
    g0/mm 0.2
    保护轴承单边间隙 gmin/mm 0.125
    I0/A 1.3
    α/(°) 22.5
    μ0/(N·A−2 4π × 10−7
    ka/(A·V−1 0.26
    ks/(V·m−1 20000
    转子转速 n/(r·min−1 3000
    kp 1.8
    kd 0.002
    ω 3000
    下载: 导出CSV

    表  2  转子位移二范数

    Table  2.   2-Norm of rotor displacement

    名称 二范数大小 相比 PID 控制器振幅降低比例/%
    ||ePID||2 7261.6
    ||eESO||2 5684.6 21.7
    ||eMESO||2 4608.7 36.5
    下载: 导出CSV
  • [1] MASLEN E H, SCHWEITZER G. Magnetic bearings: theory, design, and application to rotating machinery[M]. Heidelberg: Springer, 2009.
    [2] 刘淑琴, 边忠国, 李瑞建, 等. 磁悬浮人工心脏泵及在体外循环系统(ECMO)上的实验研究[J/OL]. 西南交通大学学报. [2022-12-10]. http://kns.cnki.net/kcms/detail/51.1277.U.20220426.1933.010.html.
    [3] DU G H, XU W, ZHU J G, et al. Effects of design parameters on the multiphysics performance of high-speed permanent magnet machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3472-3483. doi: 10.1109/TIE.2019.2922933
    [4] 钟志贤,蔡忠侯,祁雁英. 单自由度磁悬浮系统无模型自适应控制的研究[J]. 西南交通大学学报,2022,57(3): 549-557,581.

    ZHONG Zhixian, CAI Zhonghou, QI Yanying. Model-free adaptive control for single-degree-of-freedom magnetically levitated system[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 549-557,581.
    [5] ZHANG S Y, WEI C B, LI J, et al. Robust H controller based on multi-objective genetic algorithms for active magnetic bearing applied to cryogenic centrifugal compressor[C]//Proceedings of the 29th Chinese Control And Decision Conference. Chongqing: IEEE, 2017: 46-51.
    [6] XU Y P, SHEN Q, ZHANG Y, et al. Dynamic modeling of the active magnetic bearing system operating in base motion condition[J]. IEEE Access, 2020, 8: 166003-166013. doi: 10.1109/ACCESS.2020.3022996
    [7] XU X B, FANG J C, LIU G, et al. Model development and harmonic current reduction in active magnetic bearing systems with rotor imbalance and sensor runout[J]. Journal of Vibration and Control, 2015, 21(13): 2520-2535. doi: 10.1177/1077546313513624
    [8] KATO J, TAKAGI K, INOUE T. On the stability analysis of active magnetic bearing with parametric uncertainty and position tracking control[C]// Proceedings of ASME 2016 International Mechanical Engineering Congress and Exposition. Phoenix: [s.n.], 2017: 1-10
    [9] HAN J Q. The extended state observer of a class of uncertain systems[J]. Control and Decision, 1995, 10(1): 85-88.
    [10] JIN C W, GUO K X, XU Y P, et al. Design of magnetic bearing control system based on active disturbance rejection theory[J]. Journal of Vibration and Acoustics, 2019, 141(1): 011009.1-011009.9. doi: 10.1115/1.4040837
    [11] GUAN X D, ZHOU J, JIN C W, et al. Disturbance suppression in active magnetic bearings with adaptive control and extended state observer[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(2): 272-284.
    [12] GUO B Z, ZHAO Z L. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6): 420-430.
    [13] ZHENG Q, GAOL L Q, GAO Z Q. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//2007 46th IEEE Conference on Decision and Control. Louisiana: IEEE, 2008: 3501-3506.
    [14] SUN B S, GAO Z Q. A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1271-1277. doi: 10.1109/TIE.2005.855679
    [15] GODBOLE A A, KOLHE J P, TALOLE S E. Performance analysis of generalized extended state observer in tackling sinusoidal disturbances[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2212-2223. doi: 10.1109/TCST.2012.2231512
    [16] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Ohio: IEEE, 2003: 4989-4996.
    [17] JIN H Y, SONG J C, ZENG S, et al. Linear active disturbance rejection control tuning approach guarantees stability margin[C]//2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). Singapore: IEEE, 2018: 1132-1136
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  94
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-06-05
  • 修回日期:  2023-03-24
  • 网络出版日期:  2023-06-13

目录

    /

    返回文章
    返回