Investigation on Seismic Performance of Concrete Short-Leg Shear Wall with High-Strength Steel Bars
-
摘要:
为满足震后建筑结构快速修复的需求,提出一种以高强钢棒(HG钢棒)作为暗柱纵筋的短肢剪力墙,即采用高强钢棒的混凝土短肢剪力墙,预制3个1/3缩尺的钢筋混凝土短肢剪力墙构件,通过拟静力试验,分析暗柱纵筋类型和轴压比对试件抗震性能及自复位能力的影响. 试验结果表明,与普通混凝土短肢剪力墙相比,在大变形时,高强钢棒-混凝土短肢剪力墙构件表现出良好的位移-硬化效应和自复位性,滞回曲线整体呈S形,极限承载力提高83%;其残余变形较小,在位移角3.0%时,残余变形为0.65%;在高轴压比(限值)作用下,高强钢棒-混凝土短肢剪力墙构件的极限承载能力提高11%,在位移角3.5%时,残余变形为0.50%.
Abstract:To meet the demand for rapid repair of building structures after earthquakes, a short-leg shear wall with high-strength steel bars (HG bars) as longitudinal reinforcement of the concealed column, namely short-leg shear wall with high-strength steel bars was proposed. Three prefabricated 1/3-scale reinforced concrete short-leg shear wall components were constructed, and quasi-static tests were conducted to analyze the effects of longitudinal reinforcement types of the concealed column and axial compression ratio on the seismic performance and self-restoring capability of the components. The test results show that compared to the ordinary concrete short-leg shear walls, the short-leg shear wall components with HG steel bars demonstrate a good displacement-hardening effect and self-restoring capability under large deformations and develop an overall S-shaped hysteresis curve and an 83% increase in the ultimate bearing capacity. While the residual deformation is relatively small, a residual deformation of 0.65% occurs at a displacement angle of 3.0%. In addition, under the high axial compression ratio (limit value), the ultimate bearing capacity of short-leg shear wall components with HG steel bars increases by 11%, and the residual deformation is 0.50% at a displacement angle of 3.5%.
-
表 1 构件基本参数
Table 1. Basic parameters of components
试件编号 宽厚比 剪跨比 轴压比 纵筋配筋率/% 暗柱纵筋配筋率/% 横筋配筋率/% WCP10 5 2 0.10 0.65
(6@87)2.01 (4 8)1.13
(6@50/
100)WUP10 2.54 (4HG9) WUP25 0.25 注:4HG9表示4根直径为9的高强钢棒,4 8表示4根直径为8的HRB400的钢筋.表 2 钢材的力学性能
Table 2. Mechanical properties of steel
材料类型 屈服强
度/MPa屈服应
变/%极限强
度/MPa弹性模
量/GPaHG9 1386.00 0.87 1437.84 206 8383.85 0.23 444.92 208 表 3 混凝土材料性能
Table 3. Properties of concrete materials
名称 强度等级 立方体抗压
强度/MPa轴心抗压
强度/MPa弹性模
量/GPa取值 C40 44.36 35.31 3.46 -
[1] 陈炜. 高层结构设计中短肢剪力墙的运用[J]. 工程建设与设计,2023(4): 19-21.CHEN Wei. Application of short limb shear walls in the design of high-rise structures[J]. Construction & Design for Engineering, 2023(4): 19-21. [2] 张智吉. 高强钢筋高强混凝土短肢剪力墙抗震性能研究[D]. 昆明:昆明理工大学,2022. [3] 吴金源. 短肢剪力墙在民用建筑结构设计中的运用分析[J]. 新型工业化,2022,12(2): 70-73.WU Jinyuan. Application analysis of short-leg shear wall in civil building structure design[J]. The Journal of New Industrialization, 2022, 12(2): 70-73. [4] 袁维光. 可恢复功能混凝土剪力墙的抗震性能与评估方法[D]. 成都:西南交通大学,2019. [5] 赵军,袁维光,孙玉平,等. 钢绞线-钢筋混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报,2020,41(9): 68-76.ZHAO Jun, YUAN Weiguang, SUN Yuping, et al. Experimental study on seismic behavior of shear wall reinforced by steel strands and steel bars[J]. Journal of Building Structures, 2020, 41(9): 68-76. [6] 肖水晶,徐龙河,卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学,2018,35(8): 130-137. doi: 10.6052/j.issn.1000-4750.2017.04.0296XIAO Shuijing, XU Longhe, LU Xiao. Design and behavior study on reinforced concrete shear walls with self-centering capability[J]. Engineering Mechanics, 2018, 35(8): 130-137. doi: 10.6052/j.issn.1000-4750.2017.04.0296 [7] 王威,任英子,苏三庆,等. 高层剪力墙抗震理论发展:从高强高刚到震后可恢复设计[J]. 西安建筑科技大学学报(自然科学版),2019,51(4): 493-502.WANG Wei, REN Yingzi, SU Sanqing, et al. Seismic theory development of shear walls in tall buildings: from high strength and high rigidity to resilient design after earthquake[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2019, 51(4): 493-502. [8] 邱灿星,杜修力. 自复位结构的研究进展和应用现状[J]. 土木工程学报,2021,54(11): 11-26.QIU Canxing, DU Xiuli. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal, 2021, 54(11): 11-26. [9] KURAMA Y, SAUSE R, PESSIKI S, et al. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls[J]. Journal of Structural Engineering, 1999, 125(4): 419-428. [10] DOLCE M, CARDONE D, MARNETTO R. Implementation and testing of passive control devices based on shape memory alloys[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(7): 945-968. [11] SATYARNO I. Concrete columns incorporating mixed ultra high and normal strength longitudinal reinforcement[D]. Christchurch: University of Canterbury, 1993. [12] PANDEY G R, MUTSUYOSHI H. Seismic performance of reinforced concrete piers with bond-controlled reinforcements[J]. ACI Structural Journal, 2005, 102(2): 295-304. [13] SUN Y, TAKEUCHI T, FUNATO Y, et al. Earthquake-resisting properties and evaluation of high-performance concrete columns with low residual deformation[C]// 15th World Conference on Earthquake Engineering. Lisbon: 2021: 24-30. [14] 船戸 佑樹,孫玉平,竹内崇,等. スパイラル溝を有する超高強度鉄筋の付着特性のモデル化と柱部材の履歴解析への応用[J]. コンクリート工学年次論文集,2012(3): 157-162.FUNATO Y, SUN Y, TAKEUCHI T, et al. Modeling of bonding properties of ultra-high strength reinforcement with spiral ribs and its application to historical analysis of column members[J]. Proceedings of Concrete Engineering Annual Meeting, 2012(3): 157-162. [15] 細居清剛,市来隆志,中塚 佶. PC鋼より線とグラウトとの付着特性に関する研究[J]. プレストレストコンクリートの発展に関するシンポジウム論文集,2003,12:77-80.HOSOI K, ICHIKI T, NAKATSUKA T. Study on bonding properties between PC steel strand and grout[J]. Proceedings of Symposium on the Development of Prestressed Concrete, 2003, 12: 77-80. [16] 刘志华. 采用低黏结超高强筋的可恢复性混凝土圆柱的抗震性能研究[D]. 成都:西南交通大学,2020. [17] 中华人民共和国住房和城乡建设部. 高层建筑混凝土结构技术规程:JGJ3—2010[M]. 北京:中国建筑工业出版社,2011. [18] 中华人民共和国建设部. 混凝土结构设计规范:GB 50011—2010[S]. 北京:中国建筑工业出版社,2010. [19] 中国钢铁工业协会. 金属材料 拉伸试验第一部分:温室试验方法:GB /T 228.1—2021[S]. 北京:中国标准出版社,2021. [20] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019. [21] 中国建筑科学研究院. 建筑抗震试验规程:JGJ/T 101—2015[M]. 北京:中国建筑工业出版社,2015. [22] 谢剑,孙文笑,徐福泉,等. 钢筋混凝土自复位剪力墙抗震性能试验研究[J]. 建筑结构学报,2019,40(2): 108-116.XIE Jian, SUN Wenxiao, XU Fuquan, et al. Experimental study on seismic behavior of self-centering RC shear walls[J]. Journal of Building Structures, 2019, 40(2): 108-116. -