• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

不同温度作用下砂岩能量演化机制及本构模型研究

雷瑞德 周林森 胡超 李梦来 黄凌

雷瑞德, 周林森, 胡超, 李梦来, 黄凌. 不同温度作用下砂岩能量演化机制及本构模型研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230714
引用本文: 雷瑞德, 周林森, 胡超, 李梦来, 黄凌. 不同温度作用下砂岩能量演化机制及本构模型研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230714
LEI Ruide, ZHOU Linsen, HU Chao, LI Menglai, HUANG Ling. Energy Evolution Mechanism and Constitutive Model of Sandstone Subjected to Different Temperatures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230714
Citation: LEI Ruide, ZHOU Linsen, HU Chao, LI Menglai, HUANG Ling. Energy Evolution Mechanism and Constitutive Model of Sandstone Subjected to Different Temperatures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230714

不同温度作用下砂岩能量演化机制及本构模型研究

doi: 10.3969/j.issn.0258-2724.20230714
基金项目: 中国博士后科学基金(2023MD744136);重庆市博士后研究项目(2022CQBSHTB3109)
详细信息
    作者简介:

    雷瑞德(1988—),男,讲师,博士,研究方向为矿山岩石力学、数值计算,E-mail:leiruide123@163.com

    通讯作者:

    胡超(1991—),男,讲师,博士,研究方向为边坡可靠度分析,E-mail:chaohu8738@163.com

  • 中图分类号: TU452

Energy Evolution Mechanism and Constitutive Model of Sandstone Subjected to Different Temperatures

  • 摘要:

    为研究高温对砂岩物理力学性能劣化的影响,本文开展不同温度热处理砂岩的单轴压缩试验. 首先,分析力学强度和破断模式,获得砂岩宏观力学参数的劣化特征;其次,研究不同温度对砂岩能量演化机制及弹性能耗比的影响;最后,基于温度和荷载损伤因子,采用分段函数方法构建考虑裂纹闭合阶段的热-力耦合损伤本构模型. 研究结果表明:随着温度的增加,砂岩峰值强度和弹性模量先增加后减小,在200 ℃时达到最大值;破断模式由倾斜剪切破坏向“Y”型共轭拉-剪混合破坏转变,脆-延性转变的临界温度阈值为400 ℃;根据耗散能演化特征将整个变形破裂过程划分为裂纹闭合阶段、弹性阶段、宏观裂纹扩展阶段和峰后阶段;弹性能耗比(K)的拐点可作为砂岩由弹性向塑性转变的突变点;模型尺寸参数(m)随温度升高先上升后下降,形状参数(n)逐渐降低,该参数也能反映砂岩的强度和塑性特征,理论模型与室内试验结果吻合度较高,说明本模型能够反演热-力耦合下砂岩损伤演化全过程.

     

  • 图 1  不同温度热处理典型砂岩破坏形态

    Figure 1.  Failure patterns of typical thermally-treated sandstone subjected to different temperatures

    图 2  不同温度热处理典型砂岩应力-应变曲线

    Figure 2.  Stress–strain curves for typical thermally-treated sandstone subjected to different temperatures

    图 3  不同温度作用砂岩力学参数变化规律

    Figure 3.  Variation pattern of mechanical parameters for sandstone subjected to different temperatures

    图 4  不同温度热处理试样能量演化曲线

    Figure 4.  Energy evolution of thermally-treated sandstone subjected to different temperatures

    图 5  典型温度作用下砂岩弹性能耗散比曲线

    Figure 5.  Elastic energy dissipation ratio of sandstone subjected to typical temperatures

    图 6  本构模型拟合参数变化规律

    Figure 6.  Variation pattern of fitting parameters for constitutive model

    图 7  不同温度热处理砂岩室内试验-理论模型对比曲线

    Figure 7.  Comparison curves of laboratory test and theoretical model for sandstone subjected to different temperatures

  • [1] BAI F T, SUN Y H, LIU Y M, et al. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches[J]. Fuel, 2017, 187: 1-8. doi: 10.1016/j.fuel.2016.09.012
    [2] SAIF T, LIN Q Y, BIJELJIC B, et al. Microstructural imaging and characterization of oil shale before and after pyrolysis[J]. Fuel, 2017, 197: 562-574. doi: 10.1016/j.fuel.2017.02.030
    [3] KUMARI W G P, RANJITH P G, PERERA M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in situ stress and temperature conditions: an application to geothermal energy extraction[J]. Geothermics, 2017, 65: 44-59. doi: 10.1016/j.geothermics.2016.07.002
    [4] LEI R D, WANG Y, ZHANG L, et al. The evolution of sandstone microstructure and mechanical properties with thermal damage[J]. Energy Science & Engineering, 2019, 7(6): 3058-3075.
    [5] 赵亚永,魏凯,周佳庆,等. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报,2017,36(1): 142-151.

    ZHAO Yayong, WEI Kai, ZHOU Jiaqing, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 142-151.
    [6] 苏海健,聂银江,蔚立元,等. 高温作用后砂岩-混凝土黏结界面拉伸力学特性研究[J]. 土木工程学报,2023,56(7): 157-167.

    SU Haijian, NIE Yinjiang, YU Liyuan, et al. Study on tensile mechanical properties of sandstone-concrete bonding interface after high-temperature treatment[J]. China Civil Engineering Journal, 2023, 56(7): 157-167.
    [7] 李天斌,高美奔,陈国庆,等. 基于热–力–损伤本构参数的硬岩脆性评价方法[J]. 岩石力学与工程学报,2022,41(增1): 2593-2602.

    LI Tianbin, GAO Meiben, CHEN Guoqing, et al. Brittleness evaluation method of hard rock based on thermal-mechanical-damage constitutive parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2593-2602.
    [8] 贾宝新,陈国栋,刘丰溥. 高温下岩石损伤本构模型及其验证[J]. 岩土力学,2022,43(增2): 63-73.

    JIA Baoxin, CHEN Guodong, LIU Fengpu. Constitutive model of rock damage at high temperature and its verification[J]. Rock and Soil Mechanics, 2022, 43(S 2): 63-73.
    [9] LIU X S, NING J G, TAN Y L, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 27-32. doi: 10.1016/j.ijrmms.2016.03.003
    [10] GONG F Q, ZHANG P L, XU L. Damage constitutive model of brittle rock under uniaxial compression based on linear energy dissipation law[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105273.1-105273.10.
    [11] 孙梦成,徐卫亚,王苏生,等. 基于最小耗能原理的岩石损伤本构模型研究[J]. 中南大学学报(自然科学版),2018,49(8): 2067-2075. doi: 10.11817/j.issn.1672-7207.2018.08.029

    SUN Mengcheng, XU Weiya, WANG Susheng, et al. Study on damage constitutive model of rock based on principle of minimum dissipative energy[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2067-2075. doi: 10.11817/j.issn.1672-7207.2018.08.029
    [12] 寇昊,何川,陈子全,等. 考虑残余强度的层状岩体损伤演化规律[J]. 西南交通大学学报,2023,58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083

    KOU Hao, HE Chuan, CHEN Ziquan, et al. Damage evolution law of layered rock mass considering residual strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
    [13] 王飞,钱永久,许金余,等. 高温作用后混凝土损伤动态本构模型研究[J]. 西南交通大学学报,2017,52(6): 1075-1081. doi: 10.3969/j.issn.0258-2724.2017.06.006

    WANG Fei, QIAN Yongjiu, XU Jinyu, et al. Analysis of dynamic damage constitutive model for concrete exposed to high temperature[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1075-1081. doi: 10.3969/j.issn.0258-2724.2017.06.006
    [14] 刘之喜,孟祥瑞,赵光明,等. 真三轴压缩下砂岩的能量和损伤分析[J]. 岩石力学与工程学报,2023,42(2): 327-341.

    LIU Zhixi, MENG Xiangrui, ZHAO Guangming, et al. Energy and damage analysis of sandstone under true triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 327-341.
    [15] 候超,靳晓光,何杰,等. 基于最大拉应变准则的冻融岩石损伤模型研究[J]. 西南交通大学学报,2023,58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493

    HOU Chao, JIN Xiaoguang, HE Jie, et al. Research on damage model of rock under freeze-thaw cycles based on maximum tensile strain criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
    [16] LI M, LIU X S. Effect of thermal treatment on the physical and mechanical properties of sandstone: insights from experiments and simulations[J]. Rock Mechanics and Rock Engineering, 2022, 55(6): 3171-3194. doi: 10.1007/s00603-022-02791-1
    [17] XU X L, GAO F, ZHANG Z Z. Thermo-mechanical coupling damage constitutive model of rock based on the Hoek–Brown strength criterion[J]. International Journal of Damage Mechanics, 2018, 27(8): 1213-1230. doi: 10.1177/1056789517726838
    [18] WANG C L, HE B B, HOU X L, et al. Stress–energy mechanism for rock failure evolution based on damage mechanics in hard rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1021-1037. doi: 10.1007/s00603-019-01953-y
    [19] 邓华锋,胡安龙,李建林,等. 水岩作用下砂岩劣化损伤统计本构模型[J]. 岩土力学,2017,38(3): 631-639.

    DENG Huafeng, HU Anlong, LI Jianlin, et al. Statistical damage constitutive model of sandstone under water-rock interaction[J]. Rock and Soil Mechanics, 2017, 38(3): 631-639.
    [20] PAN X H, GUO W, WU S F, et al. An experimental approach for determination of the Weibull homogeneity index of rock or rock-like materials[J]. Acta Geotechnica, 2020, 15(2): 375-391. doi: 10.1007/s11440-019-00803-z
    [21] XU X L, YUE C Q, XU L Q. Thermal damage constitutive model and brittleness index based on energy dissipation for deep rock[J]. Mathematics, 2022, 10(3): 410.1-410.16.
  • 加载中
图(7)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-04-11
  • 网络出版日期:  2025-02-19

目录

    /

    返回文章
    返回