• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析

姜正荣 邱俊明 石开荣 苏昌旺

姜正荣, 邱俊明, 石开荣, 苏昌旺. 考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230234
引用本文: 姜正荣, 邱俊明, 石开荣, 苏昌旺. 考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230234
JIANG Zhengrong, QIU Junming, SHI Kairong, SU Changwang. Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230234
Citation: JIANG Zhengrong, QIU Junming, SHI Kairong, SU Changwang. Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230234

考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析

doi: 10.3969/j.issn.0258-2724.20230234
基金项目: 广东省现代土木工程技术重点实验室课题(2021B1212040003)
详细信息
    作者简介:

    姜正荣(1971—),男,副教授,博士,研究方向为大跨度空间结构,E-mail:zhrjiang@scut.edu.cn

    通讯作者:

    石开荣(1978—),男,副教授,博士,研究方向为预应力钢结构,E-mail:krshi@scut.edu.cn

  • 中图分类号: TU394

Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members

  • 摘要:

    为揭示杆件初弯曲对弦支穹顶结构稳定承载力的影响规律,以多段直梁法模拟杆件初弯曲,采用随机缺陷模态法引入不同形状及幅值的杆件初弯曲,对弦支穹顶结构进行非线性屈曲分析;引入整体缺陷与杆件初弯曲,考察2种缺陷的共同施加对结构稳定性能的影响. 结果表明:仅考虑杆件初弯曲时,弦支穹顶结构的稳定承载力系数平均值显著降低(最大降幅为33.84%),该结构对杆件初弯曲较为敏感;相比于正弦全波,以正弦半波为初弯曲形状来引入杆件初弯曲,对结构的稳定性更为不利;相比于理想结构,同时考虑整体缺陷与杆件初弯曲时,结构的稳定承载力系数进一步降低(最大降幅为44.80%),但其降幅小于两者分别引入的降幅之和,2种缺陷的同时施加,对结构的稳定承载力存在耦合影响,一定程度上削弱了两者单独引入时的不利影响.

     

  • 图 1  杆件空间弯曲示意

    Figure 1.  Schematic diagram of spatial curvature of member

    图 2  多段直梁法示意

    Figure 2.  Schematic diagram of multi-beam method

    图 3  分析模型

    Figure 3.  Analytical model

    图 4  一次模拟所得的初弯曲幅值及方向角分布直方图

    Figure 4.  Distribution histograms of amplitudes and direction angles of initial curvature from one simulation

    图 5  理想结构引入杆件初弯曲分布(放大50倍)

    Figure 5.  Distributions of initial curvature of members introduced in perfect structure (enlarged by 50 times)

    图 6  稳定承载力系数分布直方图

    Figure 6.  Distribution histograms of coefficients of stability bearing capacity

    图 7  仅考虑杆件初弯曲的稳定承载力系数平均值对比

    Figure 7.  Comparison of mean coefficients of stability bearing capacity considering initial curvature of members only

    图 8  整体缺陷结构引入杆件初弯曲分布(放大50倍)

    Figure 8.  Distributions of initial curvature of members introduced in structures with overall imperfection (enlarged by 50 times)

    图 9  同时考虑2种缺陷的稳定承载力系数平均值对比

    Figure 9.  Comparison of mean coefficients of stability bearing capacity considering both kinds of imperfections

    图 10  不同模型对应的荷载-位移曲线对比

    Figure 10.  Comparison of load-displacement curves corresponding to different models

    表  1  构件和材料规格

    Table  1.   Specifications of members and materials

    结构部位 构件 材质 规格
    上部单层
    网壳
    凯威特
    部分
    径向杆 Q355B ϕ219 × 12
    环向杆 Q355B ϕ219 × 12
    斜杆 Q355B ϕ203 × 10
    联方
    部分
    环向杆 Q355B ϕ203 × 10
    斜杆 Q355B ϕ194 × 10
    撑杆 Q355B ϕ168 × 8
    下部索杆
    体系
    环向索 内圈 平行钢丝
    束,1670
    ϕ5 × 61
    中圈 平行钢丝
    束,1670
    ϕ5 × 91
    外圈 平行钢丝
    束,1670
    ϕ5 × 139
    径向索 平行钢丝
    束,1670
    ϕ5 × 55
    下载: 导出CSV

    表  2  仅考虑杆件初弯曲的稳定承载力系数

    Table  2.   Coefficients of stability bearing capacity considering initial curvature of members only

    初弯曲形状 统计结果
    正弦半波 3.361,3.328,3.382,3.390,3.391,3.398,3.377,3.345,3.338,3.355
    3.343,3.367,3.324,3.401,3.344,3.368,3.371,3.353,3.375,3.350
    3.387,3.379,3.340,3.389,3.389,3.340,3.320,3.313,3.378,3.401
    3.282,3.378,3.404,3.369,3.370,3.331,3.444,3.371,3.333,3.342
    3.310,3.361,3.394,3.402,3.338,3.314,3.377,3.348,3.337,3.359
    3.383,3.405,3.358,3.351,3.360,3.383,3.391,3.329,3.349,3.421
    3.365,3.414,3.346,3.386,3.354,3.339,3.357,3.393,3.418,3.364
    3.339,3.361,3.364,3.339,3.362,3.345,3.384,3.348,3.346,3.336
    3.356,3.403,3.346,3.350,3.409,3.375,3.379,3.393,3.377,3.326
    3.355,3.312,3.336,3.397,3.382,3.351,3.332,3.404,3.397,3.385
    $ {K_{\min }} = 3.282 $,$ {K_{\max }} = 3.444 $,$ \mu = 3.3642 $,$ {\sigma } = 0.028\;8 $
    正弦全波 3.424,3.416,3.406,3.416,3.395,3.387,3.409,3.357,3.400,3.415
    3.410,3.392,3.406,3.395,3.370,3.369,3.390,3.409,3.380,3.399
    3.370,3.400,3.413,3.422,3.398,3.385,3.405,3.422,3.424,3.423
    3.377,3.401,3.392,3.403,3.421,3.360,3.408,3.393,3.407,3.411
    3.397,3.440,3.406,3.390,3.392,3.410,3.381,3.391,3.411,3.397
    3.388,3.397,3.409,3.419,3.388,3.409,3.403,3.366,3.372,3.388
    3.410,3.399,3.367,3.386,3.427,3.412,3.394,3.401,3.411,3.402
    3.383,3.393,3.400,3.415,3.392,3.427,3.398,3.421,3.393,3.373
    3.387,3.390,3.409,3.395,3.384,3.395,3.406,3.414,3.401,3.416
    3.343,3.413,3.376,3.406,3.395,3.394,3.400,3.410,3.387,3.410
    $ {K_{\min }} = 3.343 $,$ {K_{\max }} = 3.440 $,$ \mu = 3.3987 $,$ {\sigma } = 0.017\;0 $
    下载: 导出CSV

    表  3  仅考虑杆件初弯曲的稳定承载力系数对比

    Table  3.   Comparison of coefficients of stability bearing capacity considering initial curvature of members only

    初弯曲幅值最大值 初弯曲形状 Kmin Kmax $ \mu $ $ \sigma $ 是否满足 χ2 检验 $ \mu - 3\sigma $
    lmax/700 正弦半波 3.365 3.482 3.4243 0.0178
    正弦全波 3.424 3.473 3.4453 0.0092 3.4177
    lmax/600 正弦半波 3.344 3.469 3.4141 0.0216 3.3493
    正弦全波 3.400 3.465 3.4401 0.0102 3.4095
    lmax/500 正弦半波 3.356 3.461 3.4065 0.0192 3.3489
    正弦全波 3.401 3.459 3.4334 0.0109 3.4007
    lmax/400 正弦半波 3.305 3.476 3.3890 0.0305 3.2975
    正弦全波 3.369 3.443 3.4215 0.0120 3.3855
    lmax/300 正弦半波 3.282 3.444 3.3642 0.0288 3.2778
    正弦全波 3.343 3.440 3.3987 0.0170 3.3477
    下载: 导出CSV

    表  4  同时考虑两种缺陷的稳定承载力系数对比

    Table  4.   Comparison of coefficients of stability bearing capacity considering both kinds of imperfections

    整体缺陷分布模式 初弯曲幅值最大值 最小值 最大值 平均值$ \mu $ 标准差$ \sigma $ 是否满足 χ2 检验 $ \mu - 3\sigma $
    随机缺陷 lmax/700 2.845 2.916 2.8840 0.0142
    lmax/600 2.841 2.914 2.8809 0.0125 2.8434
    lmax/500 2.843 2.940 2.8802 0.0137 2.8391
    lmax/400 2.841 2.913 2.8741 0.0164 2.8249
    lmax/300 2.833 2.912 2.8737 0.0153 2.8278
    特征缺陷 lmax/700 2.773 2.848 2.8157 0.0129
    lmax/600 2.770 2.862 2.8151 0.0157
    lmax/500 2.769 2.859 2.8146 0.0186
    lmax/400 2.775 2.899 2.8162 0.0198 2.7568
    lmax/300 2.759 2.878 2.8077 0.0197
    下载: 导出CSV
  • [1] KAWAGUCHI M, ABE M, TATEMICHI I. Design, tests and realization of “suspen-dome” system[J]. Journal of the International Association for Shell and Spatial Structures, 1999, 40(3): 179-192.
    [2] 陈丰,潘睿,王四清. 张家界大成俄罗斯马戏城主馆屋盖结构的稳定性、抗连续倒塌及施工模拟分析[J]. 建筑结构,2020,50(20): 54-58.

    CHEN Feng, PAN Rui, WANG Siqing. Analysis on the stability, progressive collapse resistance and construction simulation of the roof structure of Dacheng Russian Circus City main pavilion in Zhangjiajie[J]. Building Structure, 2020, 50(20): 54-58.
    [3] 李璐. 张弦结构在景德镇游泳馆中的应用[J]. 建筑结构,2021,51(增2): 335-339.

    LI Lu. Application of string structure in Jingdezhen swimming
    [4] 葛家琪,张国军,王树,等. 2008奥运会羽毛球馆弦支穹顶结构整体稳定性能分析研究[J]. 建筑结构学报,2007,28(6): 22-30,44. doi: 10.3321/j.issn:1000-6869.2007.06.003

    GE Jiaqi, ZHANG Guojun, WANG Shu, et al. The overall stability analysis of the suspend-dome structure system of the badminton gymnasium for 2008 Olympic Games[J]. Journal of Building Structures, 2007, 28(6): 22-30,44. doi: 10.3321/j.issn:1000-6869.2007.06.003
    [5] 刘静,赵若旭,陈宗学,等. 河北北方学院体育馆弦支穹顶屋盖稳定性能分析[J]. 建筑结构,2020,50(5): 82-87.

    LIU Jing, ZHAO Ruoxu, CHEN Zongxue, et al. Stability analysis on the suspend-dome structure roof of Hebei North University gymnasium[J]. Building Structure, 2020, 50(5): 82-87.
    [6] 陈前吉. 800 m凯威特巨型网格弦支穹顶静力及稳定性研究[D]. 哈尔滨:哈尔滨工业大学,2018.
    [7] 姜正荣,王仕统,石开荣,等. 厚街体育馆大跨度椭圆抛物面弦支穹顶结构的非线性屈曲分析[J]. 土木工程学报,2013,46(9): 21-28.

    JIANG Zhengrong, WANG Shitong, SHI Kairong, et al. Nonlinear buckling analysis of long-span elliptic paraboloid suspended dome structure for Houjie Gymnasium[J]. China Civil Engineering Journal, 2013, 46(9): 21-28.
    [8] LIU X C, ZHAN X X, ZHANG A L, et al. Random imperfection method for stability analysis of a suspended dome[J]. International Journal of Steel Structures, 2017, 17(1): 91-103. doi: 10.1007/s13296-015-1234-3
    [9] 于敬海,胡相宜,陈彦,等. 弦支穹顶初始几何缺陷分布及稳定安全系数取值研究[J]. 空间结构,2017,23(3): 3-10,20.

    YU Jinghai, HU Xiangyi, CHEN Yan, et al. Research on initial geometric imperfection distribution and stability safety factor of suspen-dome[J]. Spatial Structures, 2017, 23(3): 3-10,20.
    [10] 王琼,邓华,黄莉. 杆件初弯曲对弦支穹顶静动力承载力的影响[J]. 空间结构,2013,19(4): 18-24,33. doi: 10.3969/j.issn.1006-6578.2013.04.003

    WANG Qiong, DENG Hua, HUANG Li. Effect of member’s initial curvature on the static and dynamic bearing capacity of suspended dome[J]. Spatial Structures, 2013, 19(4): 18-24,33. doi: 10.3969/j.issn.1006-6578.2013.04.003
    [11] DING Y, ZHANG T L. Research on influence of member initial curvature on stability of single-layer spherical reticulated domes[J]. Advanced Steel Construction, 2019, 15(1): 9-15.
    [12] ZHAO Z W, LIU H Q, LIANG B, et al. Influence of random geometrical imperfection on the stability of single-layer reticulated domes with semi-rigid connection[J]. Advanced Steel Construction, 2019, 15(1): 93-99.
    [13] 闫翔宇,巩昊,陈志华,等. H型钢弦支穹顶结构弹塑性稳定性分析[J]. 空间结构,2022,28(3): 39-48.

    YAN Xiangyu, GONG Hao, CHEN Zhihua, et al. Elastic-plastic stability analysis of H-beam suspendome[J]. Spatial Structures, 2022, 28(3): 39-48.
    [14] 严佳川. 考虑杆件初弯曲的网壳结构耦合失稳机理研究[D]. 哈尔滨:哈尔滨工业大学,2012.
    [15] 陈惠发,ATSUTA T. 梁-柱分析与设计[M]. 北京:人民交通出版社,1997.
    [16] 邱俊明. 弦支穹顶结构的预应力多目标优化及静力稳定性分析[D]. 广州:华南理工大学,2022.
    [17] 李冬村. 凯威特-联方型单层网壳结构的静力稳定性及局部破坏敏感性分析[D]. 广州:华南理工大学,2019.
    [18] 刘红亮. 大跨度弦支穹顶结构的缺陷敏感区域及动力稳定性研究[D]. 广州:华南理工大学,2015.
    [19] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7—2010[S]. 北京:中国建筑工业出版社,2011.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-09-19
  • 网络出版日期:  2024-10-17

目录

    /

    返回文章
    返回