• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析

姜正荣 邱俊明 石开荣 苏昌旺

姜正荣, 邱俊明, 石开荣, 苏昌旺. 考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230234
引用本文: 姜正荣, 邱俊明, 石开荣, 苏昌旺. 考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230234
JIANG Zhengrong, QIU Junming, SHI Kairong, SU Changwang. Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230234
Citation: JIANG Zhengrong, QIU Junming, SHI Kairong, SU Changwang. Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230234

考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析

doi: 10.3969/j.issn.0258-2724.20230234
基金项目: 广东省现代土木工程技术重点实验室课题(2021B1212040003)
详细信息
    作者简介:

    姜正荣(1971—),男,副教授,博士,研究方向为大跨度空间结构,E-mail:zhrjiang@scut.edu.cn

    通讯作者:

    石开荣(1978—),男,副教授,博士,研究方向为预应力钢结构,E-mail:krshi@scut.edu.cn

  • 中图分类号: TU394

Nonlinear Buckling Analysis of Suspended Domes Considering Initial Curvature of Members

  • 摘要:

    为揭示杆件初弯曲对弦支穹顶结构稳定承载力的影响规律,以多段直梁法模拟杆件初弯曲,采用随机缺陷模态法引入不同形状及幅值的杆件初弯曲,对弦支穹顶结构进行非线性屈曲分析;引入整体缺陷与杆件初弯曲,考察2种缺陷的共同施加对结构稳定性能的影响. 结果表明:仅考虑杆件初弯曲时,弦支穹顶结构的稳定承载力系数平均值显著降低(最大降幅为33.84%),该结构对杆件初弯曲较为敏感;相比于正弦全波,以正弦半波为初弯曲形状来引入杆件初弯曲,对结构的稳定性更为不利;相比于理想结构,同时考虑整体缺陷与杆件初弯曲时,结构的稳定承载力系数进一步降低(最大降幅为44.80%),但其降幅小于两者分别引入的降幅之和,2种缺陷的同时施加,对结构的稳定承载力存在耦合影响,一定程度上削弱了两者单独引入时的不利影响.

     

  • 图 1  杆件空间弯曲示意

    Figure 1.  Schematic diagram of spatial curvature of member

    图 2  多段直梁法示意

    Figure 2.  Schematic diagram of multi-beam method

    图 3  分析模型

    Figure 3.  Analytical model

    图 4  一次模拟所得的初弯曲幅值及方向角分布直方图

    Figure 4.  Distribution histograms of amplitudes and direction angles of initial curvature from one simulation

    图 5  理想结构引入杆件初弯曲分布(放大50倍)

    Figure 5.  Distributions of initial curvature of members introduced in perfect structure (enlarged by 50 times)

    图 6  稳定承载力系数分布直方图

    Figure 6.  Distribution histograms of coefficients of stability bearing capacity

    图 7  仅考虑杆件初弯曲的稳定承载力系数平均值对比

    Figure 7.  Comparison of mean coefficients of stability bearing capacity considering initial curvature of members only

    图 8  整体缺陷结构引入杆件初弯曲分布(放大50倍)

    Figure 8.  Distributions of initial curvature of members introduced in structures with overall imperfection (enlarged by 50 times)

    图 9  同时考虑2种缺陷的稳定承载力系数平均值对比

    Figure 9.  Comparison of mean coefficients of stability bearing capacity considering both kinds of imperfections

    图 10  不同模型对应的荷载-位移曲线对比

    Figure 10.  Comparison of load-displacement curves corresponding to different models

    表  1  构件和材料规格

    Table  1.   Specifications of members and materials

    结构部位 构件 材质 规格
    上部单层
    网壳
    凯威特
    部分
    径向杆 Q355B ϕ219 × 12
    环向杆 Q355B ϕ219 × 12
    斜杆 Q355B ϕ203 × 10
    联方
    部分
    环向杆 Q355B ϕ203 × 10
    斜杆 Q355B ϕ194 × 10
    撑杆 Q355B ϕ168 × 8
    下部索杆
    体系
    环向索 内圈 平行钢丝
    束,1670
    ϕ5 × 61
    中圈 平行钢丝
    束,1670
    ϕ5 × 91
    外圈 平行钢丝
    束,1670
    ϕ5 × 139
    径向索 平行钢丝
    束,1670
    ϕ5 × 55
    下载: 导出CSV

    表  2  仅考虑杆件初弯曲的稳定承载力系数

    Table  2.   Coefficients of stability bearing capacity considering initial curvature of members only

    初弯曲形状 稳定承载力系数
    正弦半波 3.361,3.328,3.382,3.390,3.391,3.398,
    3.377,3.345,3.338,3.355,3.343,3.367,
    3.324,3.401,3.344,3.368,3.371,3.353,
    3.375,3.350,3.387,3.379,3.340,3.389,
    3.389,3.340,3.320,3.313,3.378,3.401,
    3.282,3.378,3.404,3.369,3.370,3.331,
    3.444,3.371,3.333,3.342,3.310,3.361,
    3.394,3.402,3.338,3.314,3.377,3.348,
    3.337,3.359,3.383,3.405,3.358,3.351,
    3.360,3.383,3.391,3.329,3.349,3.421,
    3.365,3.414,3.346,3.386,3.354,3.339,
    3.357,3.393,3.418,3.364,3.339,3.361,
    3.364,3.339,3.362,3.345,3.384,3.348,
    3.346,3.336,3.356,3.403,3.346,3.350,
    3.409,3.375,3.379,3.393,3.377,3.326,
    3.355,3.312,3.336,3.397,3.382,3.351,
    3.332,3.404,3.397,3.385
    $ {K_{\min }} = 3.282 $,$ {K_{\max }} = 3.444 $,$ \mu = 3.3642 $,$ {\sigma } = 0.028\;8 $
    正弦全波 3.424,3.416,3.406,3.416,3.395,3.387,
    3.409,3.357,3.400,3.415,3.410,3.392,
    3.406,3.395,3.370,3.369,3.390,3.409,
    3.380,3.399,3.370,3.400,3.413,3.422,
    3.398,3.385,3.405,3.422,3.424,3.423,
    3.377,3.401,3.392,3.403,3.421,3.360,
    3.408,3.393,3.407,3.411,3.397,3.440,
    3.406,3.390,3.392,3.410,3.381,3.391,
    3.411,3.397,3.388,3.397,3.409,3.419,
    3.388,3.409,3.403,3.366,3.372,3.388,
    3.410,3.399,3.367,3.386,3.427,3.412,
    3.394,3.401,3.411,3.402,3.383,3.393,
    3.400,3.415,3.392,3.427,3.398,3.421,
    3.393,3.373,3.387,3.390,3.409,3.395,
    3.384,3.395,3.406,3.414,3.401,3.416,
    3.343,3.413,3.376,3.406,3.395,3.394,
    3.400,3.410,3.387,3.410
    $ {K_{\min }} = 3.343 $,$ {K_{\max }} = 3.440 $,$ \mu = 3.3987 $,$ {\sigma } = 0.017\;0 $
    下载: 导出CSV

    表  3  仅考虑杆件初弯曲的稳定承载力系数对比

    Table  3.   Comparison of coefficients of stability bearing capacity considering initial curvature of members only

    初弯曲幅值最大值 初弯曲形状 Kmin Kmax $ \mu $ $ \sigma $ 是否满足 χ2 检验 $ \mu - 3\sigma $
    lmax/700 正弦半波 3.365 3.482 3.4243 0.0178
    正弦全波 3.424 3.473 3.4453 0.0092 3.4177
    lmax/600 正弦半波 3.344 3.469 3.4141 0.0216 3.3493
    正弦全波 3.400 3.465 3.4401 0.0102 3.4095
    lmax/500 正弦半波 3.356 3.461 3.4065 0.0192 3.3489
    正弦全波 3.401 3.459 3.4334 0.0109 3.4007
    lmax/400 正弦半波 3.305 3.476 3.3890 0.0305 3.2975
    正弦全波 3.369 3.443 3.4215 0.0120 3.3855
    lmax/300 正弦半波 3.282 3.444 3.3642 0.0288 3.2778
    正弦全波 3.343 3.440 3.3987 0.0170 3.3477
    下载: 导出CSV

    表  4  同时考虑2种缺陷的稳定承载力系数对比

    Table  4.   Comparison of coefficients of stability bearing capacity considering both kinds of imperfections

    整体缺陷分布模式 初弯曲幅值最大值 Kmin Kmax $ \mu $ $ \sigma $ 是否满足 χ2 检验 $ \mu - 3\sigma $
    随机缺陷 lmax/700 2.845 2.916 2.8840 0.0142
    lmax/600 2.841 2.914 2.8809 0.0125 2.8434
    lmax/500 2.843 2.940 2.8802 0.0137 2.8391
    lmax/400 2.841 2.913 2.8741 0.0164 2.8249
    lmax/300 2.833 2.912 2.8737 0.0153 2.8278
    特征缺陷 lmax/700 2.773 2.848 2.8157 0.0129
    lmax/600 2.770 2.862 2.8151 0.0157
    lmax/500 2.769 2.859 2.8146 0.0186
    lmax/400 2.775 2.899 2.8162 0.0198 2.7568
    lmax/300 2.759 2.878 2.8077 0.0197
    下载: 导出CSV
  • [1] KAWAGUCHI M, ABE M, TATEMICHI I. Design, tests and realization of “suspen-dome” system[J]. Journal of the International Association for Shell and Spatial Structures, 1999, 40(3): 179-192.
    [2] 陈丰,潘睿,王四清. 张家界大成俄罗斯马戏城主馆屋盖结构的稳定性、抗连续倒塌及施工模拟分析[J]. 建筑结构,2020,50(20): 54-58.

    CHEN Feng, PAN Rui, WANG Siqing. Analysis on the stability, progressive collapse resistance and construction simulation of the roof structure of Dacheng Russian Circus City main pavilion in Zhangjiajie[J]. Building Structure, 2020, 50(20): 54-58.
    [3] 李璐. 张弦结构在景德镇游泳馆中的应用[J]. 建筑结构,2021,51(增2): 335-339.

    LI Lu. Application of string structure in Jingdezhen swimming center[J]. Building Structure, 2021, 51(S2): 335-339.
    [4] 葛家琪,张国军,王树,等. 2008奥运会羽毛球馆弦支穹顶结构整体稳定性能分析研究[J]. 建筑结构学报,2007,28(6): 22-30,44. doi: 10.3321/j.issn:1000-6869.2007.06.003

    GE Jiaqi, ZHANG Guojun, WANG Shu, et al. The overall stability analysis of the suspend-dome structure system of the badminton gymnasium for 2008 Olympic Games[J]. Journal of Building Structures, 2007, 28(6): 22-30,44. doi: 10.3321/j.issn:1000-6869.2007.06.003
    [5] 刘静,赵若旭,陈宗学,等. 河北北方学院体育馆弦支穹顶屋盖稳定性能分析[J]. 建筑结构,2020,50(5): 82-87.

    LIU Jing, ZHAO Ruoxu, CHEN Zongxue, et al. Stability analysis on the suspend-dome structure roof of Hebei North University gymnasium[J]. Building Structure, 2020, 50(5): 82-87.
    [6] 陈前吉. 800 m凯威特巨型网格弦支穹顶静力及稳定性研究[D]. 哈尔滨:哈尔滨工业大学,2018.
    [7] 姜正荣,王仕统,石开荣,等. 厚街体育馆大跨度椭圆抛物面弦支穹顶结构的非线性屈曲分析[J]. 土木工程学报,2013,46(9): 21-28.

    JIANG Zhengrong, WANG Shitong, SHI Kairong, et al. Nonlinear buckling analysis of long-span elliptic paraboloid suspended dome structure for Houjie Gymnasium[J]. China Civil Engineering Journal, 2013, 46(9): 21-28.
    [8] LIU X C, ZHAN X X, ZHANG A L, et al. Random imperfection method for stability analysis of a suspended dome[J]. International Journal of Steel Structures, 2017, 17(1): 91-103. doi: 10.1007/s13296-015-1234-3
    [9] 于敬海,胡相宜,陈彦,等. 弦支穹顶初始几何缺陷分布及稳定安全系数取值研究[J]. 空间结构,2017,23(3): 3-10,20.

    YU Jinghai, HU Xiangyi, CHEN Yan, et al. Research on initial geometric imperfection distribution and stability safety factor of suspen-dome[J]. Spatial Structures, 2017, 23(3): 3-10,20.
    [10] 王琼,邓华,黄莉. 杆件初弯曲对弦支穹顶静动力承载力的影响[J]. 空间结构,2013,19(4): 18-24,33. doi: 10.3969/j.issn.1006-6578.2013.04.003

    WANG Qiong, DENG Hua, HUANG Li. Effect of member’s initial curvature on the static and dynamic bearing capacity of suspended dome[J]. Spatial Structures, 2013, 19(4): 18-24,33. doi: 10.3969/j.issn.1006-6578.2013.04.003
    [11] DING Y, ZHANG T L. Research on influence of member initial curvature on stability of single-layer spherical reticulated domes[J]. Advanced Steel Construction, 2019, 15(1): 9-15.
    [12] ZHAO Z W, LIU H Q, LIANG B, et al. Influence of random geometrical imperfection on the stability of single-layer reticulated domes with semi-rigid connection[J]. Advanced Steel Construction, 2019, 15(1): 93-99.
    [13] 闫翔宇,巩昊,陈志华,等. H型钢弦支穹顶结构弹塑性稳定性分析[J]. 空间结构,2022,28(3): 39-48.

    YAN Xiangyu, GONG Hao, CHEN Zhihua, et al. Elastic-plastic stability analysis of H-beam suspendome[J]. Spatial Structures, 2022, 28(3): 39-48.
    [14] 严佳川. 考虑杆件初弯曲的网壳结构耦合失稳机理研究[D]. 哈尔滨:哈尔滨工业大学,2012.
    [15] 陈惠发,ATSUTA T. 梁-柱分析与设计[M]. 北京:人民交通出版社,1997.
    [16] 邱俊明. 弦支穹顶结构的预应力多目标优化及静力稳定性分析[D]. 广州:华南理工大学,2022.
    [17] 李冬村. 凯威特-联方型单层网壳结构的静力稳定性及局部破坏敏感性分析[D]. 广州:华南理工大学,2019.
    [18] 刘红亮. 大跨度弦支穹顶结构的缺陷敏感区域及动力稳定性研究[D]. 广州:华南理工大学,2015.
    [19] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7—2010[S]. 北京:中国建筑工业出版社,2011.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-09-19
  • 网络出版日期:  2024-10-17

目录

    /

    返回文章
    返回