摘要: 为提升裂缝检测的分割精度和鲁棒性,基于头脑风暴优化(brainstorming optimization,BSO)和脉冲耦合神经网络(pulse coupled neural network,PCNN),提出了一种路面裂缝图像分割算法(BSO-PCNN). 该算法采用最大熵准则作为BSO算法的适应度函数,并依据适应度值决定参与次轮迭代的个体;BSO具有强收敛性,可快速确定最优个体解;结合图像特征,获得PCNN模型的最优参数,将其代入PCNN模型实现对裂缝图像的分割. 试验结果表明:算法可在20次迭代内取得不同类型路面裂缝图像的最大适应值,从而确定最佳分割参数;与Sobel边缘检测算法、PCNN图像分割算法、基于最大熵的遗传算法(genetic algorithm based on the maximun entropy of the histogram,GA-KSW)、基于遗传算法参数优化的PCNN分割算法(genetic algorithm based on the pulse coupled neural network,GA-PCNN)相比,BSO-PCNN算法取得了0.9924的区域一致性与0.0900的区域对比度.