• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

地铁弹性短轨枕轨道的钢轨波磨萌生原因

李伟 周志军 温泽峰

李伟, 周志军, 温泽峰. 地铁弹性短轨枕轨道的钢轨波磨萌生原因[J]. 西南交通大学学报, 2021, 56(3): 619-626. doi: 10.3969/j.issn.0258-2724.20190734
引用本文: 李伟, 周志军, 温泽峰. 地铁弹性短轨枕轨道的钢轨波磨萌生原因[J]. 西南交通大学学报, 2021, 56(3): 619-626. doi: 10.3969/j.issn.0258-2724.20190734
LI Wei, ZHOU Zhijun, WEN Zefeng. Initiation Cause of Subway Rail Corrugation on Track with Rubber-Booted Short Sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. doi: 10.3969/j.issn.0258-2724.20190734
Citation: LI Wei, ZHOU Zhijun, WEN Zefeng. Initiation Cause of Subway Rail Corrugation on Track with Rubber-Booted Short Sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. doi: 10.3969/j.issn.0258-2724.20190734

地铁弹性短轨枕轨道的钢轨波磨萌生原因

doi: 10.3969/j.issn.0258-2724.20190734
基金项目: 四川省科技计划项目(2019YFH0053);中央高校基本科研业务费专项资金资助(2682019CX44)
详细信息
    作者简介:

    李伟(1985—),男,助理研究员,研究方向为轮轨磨耗,E-mail:1022liwei@163.com

    通讯作者:

    温泽峰(1976—),男,研究员,研究方向为轮轨关系及减振降噪,E-mail:zefengwen@126.com

  • 中图分类号: U211.9

Initiation Cause of Subway Rail Corrugation on Track with Rubber-Booted Short Sleepers

  • 摘要: 为探明我国某地铁线路弹性短轨枕轨道曲线钢轨短波长波磨萌生原因,采用现场试验和数值仿真方法对其开展了研究. 首先,通过现场试验确定钢轨波磨波长与轨道动态特性对应关系;其次,利用车辆-轨道耦合动力学模型计算轮轨接触参量,通过力锤敲击法获得现场轨道导纳特性;最后,基于轮轨接触参量和轨道导纳结果,建立钢轨波磨频域线性分析的数值模型,模拟弹性短轨枕轨道频域下曲线钢轨磨损率特征,分析了弹性短轨枕轨道萌生特定波长波磨原因. 研究结果表明:地铁弹性短轨枕轨道钢轨波磨主要出现在半径小于等于800 m曲线段,低轨波磨程度更为显著,波长为50~160 mm,通过频率为140~280 Hz;轨道在160~210 Hz频率范围的模态振型表现为钢轨和轨枕一起相对轨道板垂向弯曲振动,在250~300 Hz频率范围的表现为钢轨和轨枕垂向反向振动,波磨通过频率与该轨道的160~300 Hz共振频率相近. 弹性短轨枕轨道特定波长波磨萌生主要与其轨道垂向固有特性相关,其波磨特征为频率固定型,波磨波长随车辆运行速度变化而变化.

     

  • 图 1  钢轨不平顺测试结果(线路A)

    Figure 1.  Test results of rail irregularity (line A)

    图 2  钢轨波磨现场照片(线路A,v = 55 km/h)

    Figure 2.  Field photos of rail corrugation (line A,v = 55 km/h)

    图 3  钢轨不平顺的局部放大图

    Figure 3.  Local enlargement of rail irregularity

    图 4  钢轨不平顺1/3倍频程谱

    Figure 4.  1/3 octave spectrum of rail irregularity

    图 5  轨道垂向动态特性结果

    Figure 5.  Vertical dynamic characteristics of track

    图 6  轨道有限元模型

    Figure 6.  Finite element models of track

    图 7  轨道垂向振动模态振型

    Figure 7.  Vertical vibration mode of track

    图 8  轨道横向动态特性结果

    Figure 8.  Transverse dynamic characteristics of track

    图 9  350 m曲线段钢轨磨损率特征

    Figure 9.  Wear characteristics of rails in 350 m curved section

    图 10  曲线半径对钢轨磨损率的影响

    Figure 10.  Influence of curve radius on wear rate

    表  1  钢轨波磨状态统计

    Table  1.   Statistical analysis of rail corrugation

    线路扣件形式轨枕间距/
    m
    轨枕质量/
    kg
    扣件垂向静刚度/
    (kN•mm−1
    线路状态/
    m
    运营速度/
    (km•h−1
    主波长/
    mm
    通过频率/
    Hz
    A线路普通扣件0.5859040R = 35050~6060~80174~278
    400 ≤ R ≤ 70060~8080~100167~278
    R = 80080~100125~160139~223
    B线路弹条Ⅱ-1型扣件0.6259020R > 800 和直线段70~80
    R = 35035~4050194~222
    下载: 导出CSV

    表  2  轮轨接触参数

    Table  2.   Wheel-rail contact parameters

    实际曲线
    半径/m
    超高/
    mm
    运营速度/
    (km•h−1
    轮轨法
    向力/kN
    轮轨横向
    蠕滑率/%
    接触斑大小/mm接触位置车轮/钢轨
    纵向半径/mm
    接触位置车轮/钢轨
    横向半径/mm
    长半轴短半轴
    8001409072.870.136.305.00419.6/∞∞/300
    600807067.800.146.144.90419.5/∞∞/300
    3501205571.280.406.244.98419.5/∞∞/300
    下载: 导出CSV
  • 李伟. 地铁钢轨波磨成因及其对车辆/轨道行为的影响研究[D]. 成都: 西南交通大学, 2015: 47-50.
    李霞,李伟,吴磊,等. 套靴轨枕轨道钢轨波磨初步研究[J]. 铁道学报,2014,36(11): 80-85. doi: 10.3969/j.issn.1001-8360.2014.11.016

    LI Xia, LI Wei, WU Lei, et al. Preliminary study on rail corrugation of rubber booted short sleepers track[J]. Journal of the China Railway Society, 2014, 36(11): 80-85. doi: 10.3969/j.issn.1001-8360.2014.11.016
    GRASSIE S L, KALOUSEK J. Rail corrugation:characteristics,causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    FREDERICK C O. A rail corrugation theory[C]// Proceedings of the International Symposium on Contact Mechanics and Wear of Rail-Wheel Systems. Waterloo: University of Waterloo Press, 1986: 181-211.
    HEMPELMANN K, HISS F, KNOTHE K, et al. The formation of wear patterns on rail tread[J]. Wear, 1991, 144(1/2): 179-195. doi: 10.1016/0043-1648(91)90014-L
    HEMPELMANN K, KNOTHE K. An extended linear model for the prediction of short pitch corrugation[J]. Wear, 1996, 191(1/2): 161-169. doi: 10.1016/0043-1648(95)06747-7
    TASSILLY E, VINCENT N. Rail corrugations:analytical model and field tests[J]. Wear, 1991, 144(1/2): 163-178. doi: 10.1016/0043-1648(91)90013-K
    TASSILLY E, VINCENT N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45. doi: 10.1016/0022-460X(91)90400-E
    KURZECK B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J]. Wear, 2011, 271(1): 299-310.
    AHILBECK D R, DANIELS L E. Investigation of rail corrugations on the Baltimore metro[J]. Wear, 1991, (1/2): 197-210. doi: 10.1016/0043-1648(91)90015-M
    DIANA G, CHELI F, BRUNI S, et al. Experimental and numerical investigation on subway short pitch corrugation[J]. Vehicle System Dynamics, 1998, 29(S): 234-245.
    VADILLO E G, TARRAGO J A, ZUBIAURRE G G, et al. Effect of sleeper distance on rail corrugation[J]. Wear, 1998, 217(1): 140-146. doi: 10.1016/S0043-1648(97)00239-1
    LI W, WANG H Y, WEN Z F, et al. Investigation into mechanism of metro rail corrugation using experimental and theoretical methods[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 2016, 230(4): 1025~1039.
    李伟,温泽峰,王衡禹,等. 地铁钢轨波磨演化过程中的特性分析[J]. 机械工程学报,2018,54(4): 70-78. doi: 10.3901/JME.2018.04.070

    LI Wei, WEN Zefeng, WANG Hengyu, et al. Analysis on the evolution characteristics of rail corrugation on a metro[J]. Journal of Mechanical Engineering, 2018, 54(4): 70-78. doi: 10.3901/JME.2018.04.070
    李伟,杜星,王衡禹,等. 地铁钢轨一种波磨机理的调查分析[J]. 机械工程学报,2013,49(16): 26-31. doi: 10.3901/JME.2013.16.026

    LI Wei, DU Xing, WANG Hengyu, et al. Investigation into the mechanism of type of rail corrugation of metro[J]. Journal of Mechanical Engineering, 2013, 49(16): 26-31. doi: 10.3901/JME.2013.16.026
    GRASSIE S L, GREGORY R W, HARRISON D, et al. The dynamic response of railway track to high frequency vertical excitation[J]. Journal Mechanical Engineering Science, 1982, 24(2): 77-90. doi: 10.1243/JMES_JOUR_1982_024_016_02
    KNOTHE K, GROSS-THEBING A. Short wavelength rail corrugation and non-steady state contact mechanics[J]. Vehicle System Dynamics, 2008, 46: 49-66.
    MULLER S. Linearized wheel-rail dynamics-stability and corrugation[D]. Berlin: Technical University of Berlin, 1998.
    VINCENT N, THOMPSON D J. Track dynamic behavior at high frequencies. part 2:experimental results and comparisons with theory[J]. Vehicle System Dynamics, 1995, 24(S1): 100-114.
    GRASSIE S L. Rail corrugation:characteristics,causes,and treatments[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 1993, 207(16): 57-596. doi: 10.1243/09544097JRRT264
    GRASSIE S L, EDWARDS J W. Development of corrugation as a result of varying normal load[J]. Wear, 2008, 265(9): 1150-1155. doi: 10.1016/j.wear.2008.01.034
    JIN X S, WEN Z F. Rail corrugation formation studied with a full-scale test facility and numerical analysis[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2007, 221(6): 675-98. doi: 10.1243/13506501JET269
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  317
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-09-24
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回