• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于头脑风暴优化的PCNN路面裂缝分割算法

范新南 汪杰 史朋飞 李敏

范新南, 汪杰, 史朋飞, 李敏. 基于头脑风暴优化的PCNN路面裂缝分割算法[J]. 西南交通大学学报, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
引用本文: 范新南, 汪杰, 史朋飞, 李敏. 基于头脑风暴优化的PCNN路面裂缝分割算法[J]. 西南交通大学学报, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
Citation: FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354

基于头脑风暴优化的PCNN路面裂缝分割算法

doi: 10.3969/j.issn.0258-2724.20190354
基金项目: 国家自然科学基金(61573128,61801169);江苏省自然科学基金(BK20170305)
详细信息
    作者简介:

    范新南(1965—),男,教授,博导,博士,研究方向为物联网技术及应用、信息获取与信息处理、智能图像处理、计算机测控网络等,E-mail:fanxn@hhuc.edu.cn

  • 中图分类号: U416.2

Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization

  • 摘要: 为提升裂缝检测的分割精度和鲁棒性,基于头脑风暴优化(brainstorming optimization,BSO)和脉冲耦合神经网络(pulse coupled neural network,PCNN),提出了一种路面裂缝图像分割算法(BSO-PCNN). 该算法采用最大熵准则作为BSO算法的适应度函数,并依据适应度值决定参与次轮迭代的个体;BSO具有强收敛性,可快速确定最优个体解;结合图像特征,获得PCNN模型的最优参数,将其代入PCNN模型实现对裂缝图像的分割. 试验结果表明:算法可在20次迭代内取得不同类型路面裂缝图像的最大适应值,从而确定最佳分割参数;与Sobel边缘检测算法、PCNN图像分割算法、基于最大熵的遗传算法(genetic algorithm based on the maximun entropy of the histogram,GA-KSW)、基于遗传算法参数优化的PCNN分割算法(genetic algorithm based on the pulse coupled neural network,GA-PCNN)相比,BSO-PCNN算法取得了0.9924的区域一致性与0.0900的区域对比度.

     

  • 图 1  BSO参数优化曲线

    Figure 1.  Curves of BSO parameter optimization

    表  1  不同算法对比试验

    Table  1.   Results Experiments of different algorithms comparison

    图像编号原图SobelPCNNGA-KSWGA-PCNNBSO-PCNN
    1
    2
    3
    4
    5
    下载: 导出CSV

    表  2  不同算法的区域对比度和区域一致性

    Table  2.   Regional contrast and consistency of different algorithms

    图像区域对比度区域一致性
    SobelPCNNGA-KSWGA-PCNNBSO-PCNNSobelPCNNGA-KSWGA-PCNNBSO-PCNN
    10.04870.19670.08660.07360.12950.99040.99090.99070.99060.9909
    20.03440.07190.08870.09500.09120.98780.98820.98850.98850.9886
    30.01240.02360.05130.03540.06420.99620.99630.99650.99640.9965
    40.08140.05780.10400.09380.11000.99000.98980.99130.99100.9913
    50.02180.03750.05000.05350.05380.99430.99460.99470.99450.9947
    平均值0.03970.07750.07610.07030.09000.99170.99200.99230.99220.9924
    下载: 导出CSV

    表  3  算法时间和信噪比比较

    Table  3.   Comparison of algorithm time and signal-to-noise ratio

    图像算法运行时间/s信噪比/dB
    SobelPCNNGA-KSWGA-PCNNBSO-PCNNSobelPCNNGA-KSWGA-PCNNBSO-PCNN
    10.5967.4830.4133.2893.1472.34082.26833.06731.65543.4219
    20.7027.3780.0183.2153.0171.44901.91763.50004.62843.4389
    30.6757.4240.0233.3153.0461.86331.68143.75041.48263.8259
    40.6487.4800.0283.2532.9810.74150.09200.10700.05780.2767
    50.6827.6320.0193.2513.0030.89940.05451.21215.91842.6544
    平均值0.6617.4790.1003.2653.0391.45881.20282.32742.74892.7236
    下载: 导出CSV
  • OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the 17th European Signal Processing Conference. New York: IEEE, 2009: 622-626.
    FAN X, WU J, SHI P, et al. A novel automatic dam crack detection algorithm based on local-global clustering[J]. Multimed Tools Applications, 2018, 77(22): 26581-26599.
    徐威,唐振民,吕建勇. 基于图像显著性的路面裂缝检测[J]. 中国图象图形学报,2013,18(1): 70-77.

    XU Wei, TANG Zhenmin, LV Jianyong. Pavement crack detection based on image saliency[J]. Journal of Image and Graphics, 2013, 18(1): 70-77.
    沙爱民,童峥,高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报,2018,31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001

    SHA Aimin, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001
    宋蓓蓓,韦娜. 基于脉冲耦合神经网络的路面裂缝提取[J]. 长安大学学报(自然科学版),2011,31(5): 33-37.

    SONG Beibei, WEI Na. Pavement cracks extraction based on pulse coupled neural network[J]. Journal of Chang’an University (Natural Science Edition), 2011, 31(5): 33-37.
    张坤华,谭志恒,李斌. 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J]. 光学精密工程,2018,26(4): 962-970. doi: 10.3788/OPE.20182604.0962

    ZHANG Kunhua, TAN Zhiheng, LI bin. Automated image segmentation based on pulse coupled neural[J]. Optics and Precision Engineering, 2018, 26(4): 962-970. doi: 10.3788/OPE.20182604.0962
    周东国,高潮,郭永彩. 一种参数自适应的简化PCNN图像分割方法[J]. 自动化学报,2014,40(6): 1191-1197.

    ZHOU Dongguo, GAO Chao, GUO Yongcai. Adaptive simplified PCNN parameter setting for image segmentation[J]. Acta Automatica Sinica, 2014, 40(6): 1191-1197.
    赵慧洁,葛文谦,李旭东. 最小误差准则与脉冲耦合神经网络的裂缝检测[J]. 仪器仪表学报,2012,33(3): 637-642. doi: 10.3969/j.issn.0254-3087.2012.03.023

    ZHAO Huijie, GE Wenqian, LI Xudong. Detection of crack defect based on minimum error and pulse coupled neural networks[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 637-642. doi: 10.3969/j.issn.0254-3087.2012.03.023
    宰柯楠,徐江峰. 基于遗传算法和简化PCNN的裂缝检测方法[J]. 计算机应用研究,2017,34(6): 1885-1888. doi: 10.3969/j.issn.1001-3695.2017.06.065

    ZAI Kenan, XU Jiangfeng. Method of crack detection based on genetic algorithm and simplified pulse coupled neural network[J]. Application Research of Computers, 2017, 34(6): 1885-1888. doi: 10.3969/j.issn.1001-3695.2017.06.065
    杨玉婷,史玉回,夏顺仁. 基于讨论机制的BSO算法[J]. 浙江大学学报(工学版),2013,47(10): 1705-1711.

    YANG Yuting, SHI Yuhui, XIA Shunren. Discussion mechanism based brain storm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1705-1711.
    CHENG S, QIN Q, CHEN J, et al. Brain storm optimization algorithm:a review[J]. Artificial Intelligence Review, 2016, 46(4): 445-458. doi: 10.1007/s10462-016-9471-0
    CHENG S, SHI Y, QIN Q, et al. Maintaining population diversity in brain storm optimization algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation. New York: IEEE, 2014: 3230-3237.
    MAFTEIU-SCAI L O. A new approach for solving equations systems inspired from brainstorming[J]. International Journal of New Computer Architectures and their Applications, 2015, 5(1): 10-18. doi: 10.17781/P001642
    LI J, DUAN H. Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system[J]. Aerospace Science and Technology, 2015, 42: 187-195. doi: 10.1016/j.ast.2015.01.017
    ZHOU H, JIANG M, BEN X. Niche brain storm optimization algorithm for multi-peak function optimization[J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 1626-1630. doi: 10.4028/www.scientific.net/AMR.989-994.1626
    GUO X, WU Y, XIE L, et al. An adaptive brain storm optimization algorithm for multiobjective optimization problems[C]//International Conference in Swarm Intelligence. Cham: Springer, 2015: 365-372.
    杨玉婷,段丁娜,张欢,等. 基于改进头脑风暴优化算法的隐马尔可夫模型运动识别[J]. 航天医学与医学工程,2015,28(6): 403-407.

    YANG Yuting, DUAN Dingna, ZHANG Huan, et al. Motion recognition based on hidden Markov model with improved brain storm optimization[J]. Space Medicine and Medical Engineering, 2015, 28(6): 403-407.
    LI S, PU F, LI D. An improved edge detection algorithm based on area morphology and maximum entropy[C]//Second International Conference on Innovative Computing, Information and Control. New York: IEEE, 2007: 536-539.
    曲仕茹,杨红红. 基于遗传算法参数优化的PCNN红外图像分割[J]. 强激光与粒子束,2015,27(5): 38-43.

    QU Shiru, YANG Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(5): 38-43.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  147
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-11-14
  • 网络出版日期:  2020-04-26
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回