• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响

王军平 周宇 沈钢

王军平, 周宇, 沈钢. 钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响[J]. 西南交通大学学报, 2021, 56(3): 611-618. doi: 10.3969/j.issn.0258-2724.20190184
引用本文: 王军平, 周宇, 沈钢. 钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响[J]. 西南交通大学学报, 2021, 56(3): 611-618. doi: 10.3969/j.issn.0258-2724.20190184
WANG Junping, ZHOU Yu, SHEN Gang. Effect of Rail Hardness on Fatigue Cracks Initiation and Rail Wear[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 611-618. doi: 10.3969/j.issn.0258-2724.20190184
Citation: WANG Junping, ZHOU Yu, SHEN Gang. Effect of Rail Hardness on Fatigue Cracks Initiation and Rail Wear[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 611-618. doi: 10.3969/j.issn.0258-2724.20190184

钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响

doi: 10.3969/j.issn.0258-2724.20190184
基金项目: 中国铁路总公司科技研究开发计划重大课题(2017G003-A)
详细信息
    作者简介:

    王军平(1988—),男,高级工程师,博士研究生,研究方向为钢轨打磨,钢轨疲劳及轮轨关系,E-mail:wjp0938@163.com

    通讯作者:

    周宇(1977—),男,副教授,研究方向为钢轨伤损,轨道结构与养护维修,E-mail:yzhou2785@tongji.edu.cn

  • 中图分类号: V221.3

Effect of Rail Hardness on Fatigue Cracks Initiation and Rail Wear

  • 摘要: 为了研究钢轨磨耗和疲劳裂纹萌生寿命与钢轨硬度的关系,基于Archard磨耗模型和临界平面法疲劳裂纹萌生预测模型,结合磨耗和型面变化分段迭代和疲劳损伤累积,提出了钢轨疲劳裂纹萌生和磨耗共存预测方法;对4种不同硬度钢轨的磨耗发展、疲劳损伤累积以及疲劳裂纹萌生寿命进行研究. 结果表明:该方法预测的裂纹萌生寿命与现场观测结果有较好的吻合性;高硬度钢轨可以降低磨耗、延长疲劳裂纹萌生寿命,适合在小半径曲线上应用;4种硬度的钢轨中,钢轨硬度每提高10 HBW,平均磨耗发展率将降低约3%~6%,疲劳裂纹萌生寿命延长约9%~12%;对比U78CrV/U76CrRE热轧钢轨,U78CrV热处理钢轨的平均硬度值增加了17.9%,磨耗发展率降低了约19.8%,疲劳裂纹萌生寿命延长了约57.7%;在轮轨摩擦系数为0.3时,4种钢轨的疲劳裂纹均萌生于轨面1.0~2.5 mm以下的亚表面范围内,距离轨顶中心15~18 mm.

     

  • 图 1  疲劳裂纹萌生预测流程

    Figure 1.  Process of fatigue cracks initiation

    图 2  型面对比及其一阶导数变化趋势

    Figure 2.  Comparison of the profiles and their first-order derivative

    图 3  不同钢轨在不同磨耗和型面迭代阶段的磨耗发展率

    Figure 3.  Wear growth rate of the high rail at different worn profile iteration phase

    图 4  不同钢轨在裂纹萌生时的磨耗型面对比

    Figure 4.  Comparison of the worn rail profiles of the different rails

    图 5  钢轨任意点的单点疲劳损伤

    Figure 5.  Fatigue damage at random point in the rail

    图 6  不同硬度钢轨的疲劳裂纹萌生位置

    Figure 6.  Fatigue cracks initiation position in railhead of the different kinds of rails

    表  1  钢轨磨耗及裂纹状态

    Table  1.   Rail wear and crack state

    通过总
    重/MGT
    显微观测
    (残留)裂纹深度/mm
    垂直磨耗/mm实际裂纹深度/mm
    平均值中位数最大值
    11.01.580.350.260.851.94
    下载: 导出CSV

    表  2  裂纹萌生预测结果对比

    Table  2.   Comparison of prediction results of crack initiation

    比较对象裂纹萌生寿
    命/次
    裂纹萌生位置(距轨表面垂直深度)/mm备注
    本文2.17 × 1052.42
    现场实测[19]1.63 × 105
    3.54 × 105
    文献[13]2.60 × 105
    6.58 × 105
    钢轨表面μ < 0.3 萌生于次表面,μ = 0.3为临界值
    文献[20]173440.43a机车车轮作用,a为接触斑纵向半轴长
    下载: 导出CSV

    表  3  钢轨硬度及其抗拉强度

    Table  3.   Rail hardness and strength

    钢牌号布氏硬度/HBW抗拉强度/MPa
    U78CrV/U76CrRE
    热轧
    310~360 (335)1130
    U71Mn 热处理320~380 (350)1170
    U75V 热处理340~400 (370)1256
    U78CrV 热处理370~420 (395)1357
    注:括号中的硬度中间值为本文仿真计算中所用到的硬度值.
    下载: 导出CSV

    表  4  不同钢轨的疲劳裂纹萌生寿命

    Table  4.   Fatigue cracks initiation life of the different kinds of rails

    钢牌号裂纹萌生寿命(车轮通过次数)/(× 105 次)裂纹萌生寿命
    (通过总重)/MGT
    U78CrV/U76CrRE
    热轧
    1.633.00
    U71Mn 热处理2.023.71
    U75V 热处理2.174.00
    U78CrV 热处理2.574.72
    下载: 导出CSV

    表  5  钢轨硬度、磨耗和疲劳裂纹萌生寿命的关系

    Table  5.   Relationship between rail hardness, wear growth and head check initiation life

    钢牌号 裂纹萌生寿命(车轮通过次数)/(×105次) 平均磨耗发展率/
    (μm•万次−1)
    U78CrV/U76CrRE 热轧 1.63 4.763
    U71Mn 热处理 2.02 4.349
    U75V 热处理 2.17 4.265
    U78CrV 热处理 2.57 3.818
    下载: 导出CSV
  • 张银花, 周清跃, 陈朝阳, 等. 重载铁路钢轨现状及发展方向探讨[C]//铁路重载运输技术交流会论文集. 北京: 中国铁道出版社, 2014: 381-386.
    王金虎. 大秦重车线延长钢轨寿命试验段跟踪研究[C]//铁路重载运输技术交流会论文集. 北京: 中国铁道出版社, 2014: 387-391.
    张银花,周清跃,陈朝阳,等. 重载铁路高强钢轨的试验研究[J]. 中国铁道科学,2010,31(4): 20-26.

    ZHANG Yinhua, ZHOU Qingyue, CHEN Zhaoyang, et al. Test study on the high strength rails of heavy haul railway[J]. China Railway Science, 2010, 31(4): 20-26.
    陈朝阳,周清跃,张银花,等. 低合金高强度贝氏体钢轨的试验研究[J]. 铁道学报,2013,35(8): 75-79. doi: 10.3969/j.issn.1001-8360.2013.08.012

    CHEN Zhaoyang, ZHOU Qingyue, ZHANG Yinhua, et al. Study on high strength low alloy bainitic steel rail[J]. Journal of the China Railway Society, 2013, 35(8): 75-79. doi: 10.3969/j.issn.1001-8360.2013.08.012
    张银花,李闯,周清跃,等. 我国重载铁路用过共析钢轨的试验研究[J]. 中国铁道科学,2013,34(6): 1-7. doi: 10.3969/j.issn.1001-4632.2013.06.01

    ZHANG Yinhua, LI Chuang, ZHOU Qingyue, et al. Test study on hypereutectoid rail for heavy haul railway in China[J]. China Railway Science, 2013, 34(6): 1-7. doi: 10.3969/j.issn.1001-4632.2013.06.01
    ZHOU Y, WANG S F, WANG T Y, et al. Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J]. Wear, 2014, 315(1): 68-77.
    OLOFSSON U, TELLISKIVI T. Plastic deformation and fricition of two rail steels — a full-scale test and a laboratory study[J]. Wear, 2003, 254(1/2): 80-93.
    ENBLOM R, BERG M. Proposed procedure and trial simulation of rail profiles evolution due to uniform wear[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008,222(1): 15-25.
    WANG W J, HU J, GUO J, et al. Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials[J]. Wear, 2014, 311(1/2): 130-136.
    MUSTER H, SCHMEDDERS H, WICK K, et al. Rail rolling contact fatigue,the performance of naturally hard and head-hardened rails in track[J]. Wear, 1996, 191(1): 54-64.
    LI Z L, KALKER J J. Simulation of severe wheel-rail wear[C]//Proceedings of the 6th International Conference on Computer Aided Design, Manufacture and Operation in the Railway and Other Advanced Mass Transit Systems. [S.l.]: WIT Press, 1998: 393-402.
    JENDEL T, BERG M. Contact mechanics: prediction of wheel wear for rail vehicles— methodology and verification[M]. Berlin: Springer Netherlands, 2002: 229-236.
    王少锋,周宇,许玉德,等. 基于蠕滑理论的钢轨临界平面疲劳参量仿真[J]. 铁道学报,2014,36(4): 65-70. doi: 10.3969/j.issn.1001-8360.2014.04.012

    WANG Shaofeng, ZHOU Yu, XU Yude, et al. Simulation of fatigue parameters of rail critical plane based on wheel-rail creep theory[J]. Journal of the China Railway Society, 2014, 36(4): 65-70. doi: 10.3969/j.issn.1001-8360.2014.04.012
    LEWIS R, BRAGHIN F, WARD A, et al. Integrating dynamics and wear modelling to predict railway wheel profile evolution[C]//6th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2003). Gothenburg: [s.n.], 2003: 7-16.
    ZHOU Yu, YU Miao, JIANG Junnan. Effects of rail hardness on rail wear and head check initiation[J]. Journal of the Transportation Research Board, 2016,2545: 55-65.
    周宇,张杰,王少峰,等. 考虑磨耗的钢轨疲劳裂纹萌生寿命预测仿真[J]. 铁道学报,2016,38(7): 91-97. doi: 10.3969/j.issn.1001-8360.2016.07.013

    ZHOU Yu, ZHANG Jie, WANG Shaofeng, et al. Simulation on rail head check initiation lifetime prediction considering rail wear[J]. Journal of the China Railway Society, 2016, 38(7): 91-97. doi: 10.3969/j.issn.1001-8360.2016.07.013
    ZHOU Y, HAN Y B, MU D S, et al. Prediction of the coexistence of rail head check initiation and wear growth[J]. International Journal of Fatigue, 2018, 112: 289-300.
    RINGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International Journal of Fatigue, 2000, 22(3): 205-215.
    WANG J X, XU Y D, LIAN S L, et al. Probabilistic prediction model for initiation of RCF cracks in heavy-haul railway[J]. International Journal of Fatigue, 2011, 33(2): 212-216.
    邓铁松,李伟,温泽峰,等. 钢轨滚动接触疲劳裂纹萌生寿命预测[J]. 润滑与密封,2013,38(8): 46-51. doi: 10.3969/j.issn.0254-0150.2013.08.010

    DENG Tiesong, LI Wei, WEN Zefeng, et al. Prediction on rolling contact fatigue crack initiation life of rails[J]. Lubrication Engineering, 2013, 38(8): 46-51. doi: 10.3969/j.issn.0254-0150.2013.08.010
    周宇,王少锋,张杰,等. 轨底坡对曲线线路钢轨疲劳裂纹萌生寿命的影响[J]. 中国铁道科学,2015,36(1): 25-32. doi: 10.3969/j.issn.1001-4632.2015.01.04

    ZHOU Yu, WANG Shaofeng, ZHANG Jie, et al. Effect of rail cant on fatigue crack initiation life of curve rail[J]. China Railway Science, 2015, 36(1): 25-32. doi: 10.3969/j.issn.1001-4632.2015.01.04
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  439
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-06-26
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回