• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于ICEEMDAN的连续梁桥车致振动信号的HHT分析

邢世玲 吕双双 朱利明 张佳

邢世玲, 吕双双, 朱利明, 张佳. 基于ICEEMDAN的连续梁桥车致振动信号的HHT分析[J]. 西南交通大学学报, 2021, 56(3): 477-484, 492. doi: 10.3969/j.issn.0258-2724.20190285
引用本文: 邢世玲, 吕双双, 朱利明, 张佳. 基于ICEEMDAN的连续梁桥车致振动信号的HHT分析[J]. 西南交通大学学报, 2021, 56(3): 477-484, 492. doi: 10.3969/j.issn.0258-2724.20190285
XING Shiling, LYU Shuangshuang, ZHU Liming, ZHANG Jia. Hilbert-Huang Transfer Analysis on Vehicle-Induced Vibration Signal of Continuous Bridges Based on ICEEMDAN[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 477-484, 492. doi: 10.3969/j.issn.0258-2724.20190285
Citation: XING Shiling, LYU Shuangshuang, ZHU Liming, ZHANG Jia. Hilbert-Huang Transfer Analysis on Vehicle-Induced Vibration Signal of Continuous Bridges Based on ICEEMDAN[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 477-484, 492. doi: 10.3969/j.issn.0258-2724.20190285

基于ICEEMDAN的连续梁桥车致振动信号的HHT分析

doi: 10.3969/j.issn.0258-2724.20190285
基金项目: 国家自然科学基金(51178220)
详细信息
    作者简介:

    邢世玲(1978—),女,副教授,博士,研究方向为桥梁结构动力性能,E-mail:xingshiling@sina.com

    通讯作者:

    朱利明(1968—),男,教授级高工,研究方向为桥梁结构检测、评估与加固改造,E-mail:zhulm@njut.edu.cn

  • 中图分类号: TU312

Hilbert-Huang Transfer Analysis on Vehicle-Induced Vibration Signal of Continuous Bridges Based on ICEEMDAN

  • 摘要: 改进的带有自适应噪声的完备集合经验模式分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)是传统经验模式分解(empirical mode decomposition,EMD)方法的发展,在桥梁结构损伤识别领域具有较好的应用前景. 首先,以数值模拟信号为对象,采用ICEEMDAN方法进行桥梁车致动信号的数据分解和Hilbert谱分析,提取损伤引起的频谱特征变化和建立损伤识别方法;然后,利用该方法对实测振动信号的振型分量进行识别;最后,以实测信号的一阶振型分量为对象,对其Hilbert瞬时频率谱的特征进行了分析和讨论. 研究结果表明:模拟信号中的振型振动分量数比实测信号中多,其中模拟信号中不显著的高阶竖弯振动分量在实测信号中没有发现; 一阶振型振动分量的瞬时频率可作为桥梁损伤识别的特征参数,用于进行损伤有无、损伤定位甚至损伤定量的判断; 损伤识别效果受测点位置影响很小; 该方法不依赖有限元模型即可完成桥梁损伤有无的识别和损伤定位,且数据采集简单,具有实际工程中应用可行性.

     

  • 图 1  跨中横断面(单位:cm)

    Figure 1.  Cross section of mid-span (unit:cm)

    图 2  两轴车辆计算模型

    Figure 2.  Two-axis vehicle model

    图 3  作用于桥面的移动荷载

    Figure 3.  Moving load data sequence acting on deck

    图 4  跑车试验测点布置及编号(单位:cm)

    Figure 4.  Measuring points layout and number in running tests (unit:cm)

    图 5  加速度模拟信号

    Figure 5.  Acceleration simulated signal

    图 6  加速度实测信号

    Figure 6.  Acceleration measured signal

    图 7  ICEEMDAN分解

    Figure 7.  ICEEMDAN decomposition

    图 8  无损伤状态各IMF分量的Hilbert边际谱

    Figure 8.  Hilbert marginal spectrum of IMF components in undamaged state

    图 9  有损伤状态各IMF分量的Hilbert边际谱

    Figure 9.  Hilbert marginal spectrum of IMF components with damage

    图 10  各IMF分量的Hilbert边际谱

    Figure 10.  Hilbert marginal spectrum of IMF components

    图 11  模拟信号及其一阶振型振动分量的Hilbert瞬时频率谱

    Figure 11.  Simulated acceleration signal and Hilbert instantaneous frequency spectrum of first-order mode vibration components

    图 12  实测信号及其一阶振型振动分量的Hilbert瞬时频率谱

    Figure 12.  Measured acceleration signal and Hilbert instantaneous frequency spectrum of first-order mode vibration components

    图 13  环境激励下一阶振型分量的Hilbert瞬时频率谱

    Figure 13.  Hilbert instantaneous frequency spectrum of first-order mode component under environmental excitation

    表  1  车辆模型的计算参数

    Table  1.   Calculation parameters of vehicle model

    参数参数
    mv/kg17000Jθ/(kg•m22.4 × 104
    mt1/kg500mt2/kg2000
    ks1/(N•m−18 × 106ks2/(N•m−116 × 106
    cs1, cs2/(N•s•m−14 × 104kt2/(N•m−116.0 × 106
    kt1/(N•m−14.5 × 106c10.65
    Lc/m4.27c20.35
    下载: 导出CSV

    表  2  移动车辆前、后轮到达特征截面时间

    Table  2.   Time when front and rear wheels of moving vehicle reach the characteristic sections s

    截面位置行车速度/(km•h−1
    102030
    测点 1 前轮 3.24 1.62 1.08
    后轮 4.78 2.39 1.59
    中墩 ② 前轮 6.48 3.24 2.16
    后轮 8.02 4.01 2.67
    测点 3 前轮 10.71 5.36 3.57
    后轮 12.25 6.12 4.08
    中墩 ③ 前轮 14.94 7.47 4.98
    后轮 16.48 8.24 5.49
    测点 5 前轮 18.18 9.09 6.06
    后轮 19.72 9.86 6.57
    下载: 导出CSV
  • 闫宇智,战家旺,张楠,等. 基于小波相关性的简支梁桥损伤评估方法[J]. 振动与冲击,2018,37(12): 67-74.

    YAN Yuzhi, ZHAN Jiawang, ZHANG Nan, et al. A damage evaluation method for simply-supported bridges based on wavelet transform correlation[J]. Journal of Vibration and Shock, 2018, 37(12): 67-74.
    孙增寿,李晓鹏,韩培琰,等. 基于小波包样本熵的连续梁桥损伤识别[J]. 振动、测试与诊断,2018,38(5): 916-1078.

    SUN Zenshou, LI Xiaopeng, HAN Peiyan, et al. Damage identification for continuous girder bridge based on wavelet packet sample entropy[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(5): 916-1078.
    余竹,夏禾. 基于移动荷载作用下的结构响应及小波分析的桥梁损伤诊断[J]. 北京交通大学学报,2014,38(3): 55-61. doi: 10.11860/j.issn.1673-0291.2014.03.010

    YU Zhu, XIA He. Bride damage detection based on moving load induced structural response and wavelet analysis[J]. Journal of Beijing Jiaotong University, 2014, 38(3): 55-61. doi: 10.11860/j.issn.1673-0291.2014.03.010
    KHORRAM A, BAKHTIARI-NEJAD F, REZAEIAN M. Comparison studies between two wavelet based crack detection methods of a beam subjected to a moving load[J]. International Journal of Engineering Science, 2012, 51: 204-215. doi: 10.1016/j.ijengsci.2011.10.001
    ROVERI N, CARCATERRA A. Damage detection in structures under traveling loads by Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2012, 28: 128-144. doi: 10.1016/j.ymssp.2011.06.018
    LIU H B, NGUYEN H H. Damage detection of simply supported beam under effect of moving load by Hilbert-Huang transform[J]. Applied Mechanics and Materials, 2012, 166/167/168/169: 984-993. doi: 10.4028/www.scientific.net/AMM.166-169.984
    AIED H, GONZÁLEZ A, CANTERO D. Identification of sudden stiffness changes in the acceleration response of a bridge to moving loads using ensemble empirical mode decomposition[J]. Mechanical Systems and Signal Processing, 2016, 66: 314-338.
    ZHANG W, LI J, HAO H, et al. Damage detection in bridge structures under moving loads with phase trajectory change of multi-type vibration measurements[J]. Mechanical Systems and Signal Processing, 2017, 87: 410-425. doi: 10.1016/j.ymssp.2016.10.035
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London,Series A:Mathematical,Physical and Engineering Sciences, 1998, 454: 903-995. doi: 10.1098/rspa.1998.0193
    WU Z H, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2005, 1(1): 1-41.
    YEH J R, SHIEN J S, HUANG N E. Complementary ensemble empirical mode decomposition:a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. doi: 10.1142/S1793536910000422
    TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Prague: IEEE, 2011: 4144-4147.
    COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14: 19-29. doi: 10.1016/j.bspc.2014.06.009
    邢世玲. 公路混凝土曲线连续梁桥在移动车辆荷载作用下的动反应研究[D]. 南京: 东南大学, 2014.
    张佳. 移动车辆荷载作用下连续梁桥振动信号的HHT分析与应用[D]. 南京: 南京工业大学, 2018.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  334
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-09
  • 修回日期:  2019-11-19
  • 网络出版日期:  2020-08-24
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回